Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Galerkin and Reduced Basis methods for UQ

Olivier Le Maître¹ (with Omar Knio KAUST)

¹Centre de Mathématiques Appliquées, CNRS Ecole Polytechnique, Palaiseau, France https://perso.limsi.fr/olm/ olivier.le-maitre@polytechnique.edu

Ecole d'été de Mécanique Théorique, Quiberon

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Objectives of the lecture

- Basic principle of stochastic Galerkin projection
- Discuss derivation and elementary building blocks of the Galerkin projection
- Galerkin linear models and evaluation of non-linearities
- PGD and reduced basis methods.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Stochastic Galerkin projection

Galerkin projection

- Weak solution of the stochastic problem $\mathcal{M}(U(\xi); D(\xi)) = 0$
- Needs adaptation of deterministic codes
- Potentially more efficient than NI techniques.
- Better suited to improvement (error estimate, optimal and basis reduction, ...), thanks to functional analysis.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Stochastic Galerkin projection

Stochastic discretization Let $S^{P} \subset L^{2}(\Xi, p_{\xi})$ defined as

$$\mathcal{S}^{\mathrm{P}} = \text{span}\{\Psi_0, \dots, \Psi_{\mathrm{P}}\},\$$

where the $\{\Psi_k\}$ are orthogonal functionals in ξ , *e.g.* a PC basis truncated to an order No.

 S^{P} is called the stochastic approximation space We seek for the approximate stochastic model solution in $\mathcal{V} \otimes S^{P}$.

$$U(\boldsymbol{\xi}) \approx U^{\mathrm{P}}(\boldsymbol{\xi}) = \sum_{k=0}^{\mathrm{P}} u_k \Psi_k(\boldsymbol{\xi}).$$

Inserting U^P in the weak formulation yields the stochastic residual

$$\left\langle \mathcal{M}(\boldsymbol{U}^{\mathrm{P}}(\boldsymbol{\xi});\boldsymbol{D}(\boldsymbol{\xi})), \beta(\boldsymbol{\xi}) \right\rangle = \left\langle \boldsymbol{R}(\boldsymbol{U}^{\mathrm{P}}), \beta \right\rangle.$$

Proper Generalized Decomposition

Stochastic Galerkin projection

Galerkin projection

[Ghanem & Spanos, 1991]

$$\left\langle \mathcal{M}(\boldsymbol{U}^{\mathrm{P}}(\boldsymbol{\xi});\boldsymbol{D}(\boldsymbol{\xi})), eta(\boldsymbol{\xi}) \right
angle = \left\langle \boldsymbol{R}(\boldsymbol{U}^{\mathrm{P}}), eta
ight
angle.$$

In general, one cannot find $\textit{U}^{P} \in \mathcal{V} \otimes \mathcal{S}^{P}$ such that

$$\langle R(U^{\mathrm{P}}), \beta \rangle = 0 \quad \forall \beta \in L^{2}(\Xi, p_{\xi}).$$

It is then required that $R(U^{P})$ is orthogonal to the stochastic approximation space:

$$\left< \mathcal{M}(\textit{U}^{\mathrm{P}}({\boldsymbol{\xi}});\textit{D}({\boldsymbol{\xi}})), \beta({\boldsymbol{\xi}}) \right> = 0 \quad \forall eta \in \mathcal{S}^{\mathrm{P}}.$$

- This weak formulation corresponds to the stochastic Galerkin formulation.
- The actual formulation is obtained in practice by projecting all model equations on $\mathcal{S}^{\rm P}$ (see examples later).

Galerkin Method	Galerkin Projection of Linear / Non-linear Models	Proper Generalized Decomposition
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Chashestia Caladiin a	un la stian	

The Galerkin projection results in a set of P + 1 coupled problems for the stochastic modes u_k of the solution.

Find $\{u_k, k = 0, \dots, P+1\} \in \mathcal{V}^{P+1}$ such that

$$\left\langle \mathcal{M}\left(\sum_{k=0}^{P} u_k \Psi_k(\boldsymbol{\xi}); D(\boldsymbol{\xi})\right), \Psi_l(\boldsymbol{\xi}) \right\rangle = 0, \quad l = 0, \dots, P.$$

- The size of the Galerkin problem increases with P.
- Recall that P = 1 = (N + No)!/N!No! for polynomial truncation at order No.
- This can be very costly for complex problems requiring large parametrization and large expansion order.
- Projections on the Ψ_1 of the model equations can be problematic in presence of non-linearities.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Stochastic Galerkin projection

The Galerkin projection for the elliptic problem: Find $U(\mathbf{x}, \boldsymbol{\xi}) \in H_0^1 \otimes L^2(\Xi, P_{\Xi})$ such that

$$A(U, V; D) = B(V) \quad \forall V(\boldsymbol{x}, \boldsymbol{\xi}) \in H^1_0 \otimes L^2(\Xi, P_{\Xi}),$$

where

$$A(U, V; D) = \mathbb{E}\left[\int_{\Omega} \nu(\boldsymbol{x}, \boldsymbol{\xi}) \nabla U(\boldsymbol{x}, \boldsymbol{\xi}) \cdot \nabla V(\boldsymbol{x}, \boldsymbol{\xi}) d\boldsymbol{x}\right], \quad B(V) = \mathbb{E}\left[\int_{\Omega} F(\boldsymbol{x}, \boldsymbol{\xi}) V(\boldsymbol{x}, \boldsymbol{\xi}) d\boldsymbol{x}\right].$$

Introducing the PC expansion of U, it comes the **coupled** set of deterministic problems: Find $\{u_k\}_{k=0,...,P} \in (H_0^1)^{P+1}$ such that

$$\sum_{l=0}^{\mathbf{P}} a_{kl}(u_l, v) = b_k(v) \quad \forall v \in H_0^1, k = 0, \dots, \mathbf{P},$$

where

$$a_{kl}(u,v) = \int_{\Omega} \mathbb{E}\left[\nu(\boldsymbol{x},\boldsymbol{\xi})\Psi_{k}(\boldsymbol{\xi})\Psi_{l}(\boldsymbol{\xi})\right] \nabla u \cdot \nabla v d\boldsymbol{x}, \quad b_{k}(v) = \int_{\Omega} \mathbb{E}\left[f(\boldsymbol{x},\boldsymbol{\xi})\Psi_{k}(\boldsymbol{\xi})\right] v(\boldsymbol{x}) d\boldsymbol{x}.$$

Galerkin Method	Galerkin Projection of Linear / Non-linear Models	Proper Generalized Decomposition
00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Stochastic Galerkin projection

Galerkin projection of discrete deterministic problems

The previous development can be applied to models discretized at the deterministic level.

Seeking for for $\boldsymbol{U}(\boldsymbol{\xi}) \approx \boldsymbol{U}^{\mathrm{P}} \in \mathbb{R}^{m} \otimes S^{\mathrm{P}}$, we obtain Find $\{\boldsymbol{u}_{k}, k = 0, \dots, \mathrm{P}+1\} \in (\mathbb{R}^{m})^{\mathrm{P}+1}$ such that

$$\left\langle \mathcal{M}_{h}\left(\sum_{k=0}^{\mathrm{P}}\boldsymbol{u}_{k}\Psi_{k}(\boldsymbol{\xi}); D(\boldsymbol{\xi})\right), \Psi_{l}(\boldsymbol{\xi}) \right\rangle = 0, \quad l = 0, \ldots, \mathrm{P}.$$

For many models, apply the stochastic discretization before the deterministic discretization results in the same Galerkin problem as proceeding the reverse way, provided that \mathcal{V}^h is independent of $\boldsymbol{\xi}$. Exceptions include, *e.g.*,

- Lagrangian formulations [OLM & OK, JCP 2009],
- treatment of geometric uncertainties.

Galerkin Method	Galerkin Projection of Linear / Non-linear Models	Proper Generalized Decomposition
Linear Models		

- The linear Galerkin problem couples all the stochastic modes $u_i \in \mathbb{R}^m$ of the stochastic solution.
- It is not possible in general to compute independently the components **u**_i.
- The size of the spectral problem is large: $m \times \dim S^P = m \times (P+1)$.
- Resolution of the linear Galerkin system can be demanding.
- An understanding of the block structured system is instructive to design and apply well-suited numerical methods.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Linear Models

Structure of Galerkin problems for uncertain linear operators

N = 4-dim $S^P = 35$ -S = 0.58 N = 6-dim $S^P = 84$ -S = 0.41

 ${\rm N}=8{\rm -dim}\,{\cal S}^{\rm P}=165{\rm -}{\cal S}=0.31~{\rm N}=10{\rm -dim}\,{\cal S}^{\rm P}=286{\rm -}{\cal S}=0.23$

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks $[\overline{A}]_{ij}$ that are generally non-zero appear as black squares.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Linear Models

Structure of Galerkin problems for uncertain linear operators

No = 2-dim S^{P} = 21-S = 0.52 No = 3-dim S^{P} = 56-S = 0.49

No = 4-dim S^{P} = 126-S = 0.54 No = 5-dim S^{P} = 252-S = 0.55

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks $|\vec{A}|_{ji}$ that are generally non-zero appear as black squares.

Galerkin Method	Galerkin Projection of Linear / Non-linear Models	Proper Generalized Decomposition
Linear Models		

- Examples above assumes that $[A](\xi)$ has a full spectrum in S^{P} .
- When [A](\$) has a first-order expansion, the block structure of the linear spectral problem becomes even sparser.
- This behavior motivates the selection, whenever possible, of an approximation based on a first order operator.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Linear Models

Structure of Galerkin problems for uncertain linear operators

No = 2-dim S^{P} = 21-S = 0.184 No = 3-dim S^{P} = 56-S = 0.084

No = 4-dim $S^{P} = 126$ -S = 0.043 No = 5-dim $S^{P} = 252$ -S = 0.024

Case of a linear stochastic operator $[A](\xi)$ having a first-order expansion.

Galerkin Method	Galerkin Projection of Linear / Non-linear Models	Proper Generalized Decompo
Linear Models		

- The main difficulty in solving discrete linear spectral problems is the size of the system.
- The structure and sparsity of the linear Galerkin problem suggests iterative solution strategies.
- Iterative solvers (*e.g.* conjugate gradient techniques for symmetric systems, and Krylov subspace methods) can be used.
- The efficiency of iterative solvers depends on the availability of appropriate preconditioners which need be adapted to the Galerkin problem.
- Construction of the preconditioners to exploit the block-structure of the linear Galerkin problem.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Many models involve non-linearities of various types and their treatment is critical in stochastic Galerkin methods

Let $\{\Psi_k(\boldsymbol{\xi})\}_{k=0}^p$ be an orthogonal basis of $S^P \subset L_2(\Xi, P_{\Xi})$, and *f* a non-linear functional u, v, \ldots :

 $u, v, \dots \in \mathbb{R} \mapsto f(u, v, \dots) \in \mathbb{R}.$

For random arguments, $U(\boldsymbol{\xi}), V(\boldsymbol{\xi}), \dots \in \mathbb{R} \otimes S^{P}$, we generally have $f(U, V, \dots) =: G(\boldsymbol{\xi}) \notin \mathbb{R} \otimes S^{P}$, but if $G(\boldsymbol{\xi}) \in \mathbb{R} \otimes L_{2}(\Xi, P_{\Xi})$ it has an orthogonal projection on S^{P} ,

$$G(\boldsymbol{\xi}) pprox \widehat{G} = \sum_{k=0}^{\mathrm{P}} g_k \Psi_k, \quad g_k = rac{\langle f(U, V, \dots), \Psi_k
angle}{\langle \Psi_k^2
angle}.$$

The problem is therefore to derive efficient strategies to compute the expansion coefficients g_k of $\hat{G}(\xi)$ from the expansion coefficients of its arguments $U(\xi), V(\xi), \ldots$

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

The product of two quantities appears in many models.

It corresponds to the case $G(\xi) = W(\xi) = U(\xi)V(\xi)$ for $U, V \in S^{P}$ having known expansions. Clearly,

$$W(\boldsymbol{\xi}) = \sum_{i=0}^{P} \sum_{j=0}^{P} u_i v_j \Psi_i(\boldsymbol{\xi}) \Psi_j(\boldsymbol{\xi}).$$

and in general $W(\xi) \notin S^{P}$ though it is in $L_{2}(\Xi, P_{\Xi})$. Therefore, \widehat{W} , the orthogonal projection of W on S^{P} , has expansion coefficients

$$w_k = \frac{\langle W, \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \sum_{i=0}^{P} \sum_{j=0}^{P} u_i v_j C_{ijk}.$$

The result of the orthogonal projection of UV is called the Galerkin product of U and V and is denoted U * V.

The Galerkin product introduces **truncation errors** by disregarding the components of UV orthogonal to S^{P} .

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

Higher order polynomial non-linearities are also frequent.

Consider first the triple product $G(\xi) = U(\xi)V(\xi)W(\xi)$ One can again perform an exact Galerkin projection of the triple product:

$$\begin{split} \widehat{UVW} &:= \sum_{m=0}^{P} \widehat{uvw}_m \Psi_m = \sum_{m=0}^{P} \Psi_m \left(\sum_{j,k,l=0}^{P} T_{jklm} u_j v_k w_l \right), \\ T_{jklm} &\equiv \frac{\langle \Psi_j \Psi_k \Psi_l \Psi_m \rangle}{\langle \Psi_m \Psi_m \rangle}. \end{split}$$

- This exact Galerkin projection of the triple product involves the fourth order tensor T_{jklm}.
- T_{jklm} is sparse with many symmetries .
- However, computation and storage of *T_{jklm}* becomes quickly prohibitive when P increases.
- The exact Galerkin projection can hardly be extended further to higher order polynomial non-linearities.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

It is often preferred to rely on approximations for polynomial non-linearities of order larger than 2. For the triple product, an immediate approximation is

$$\widehat{UVW}\approx U*(V*W)=\widehat{UVW}.$$

This strategy can be extended to higher degree polynomial non-linearities by using successive Galerkin products. For instance,

$$\widehat{ABC\ldots D} \approx A * (B * (C * (\ldots * D))).$$

This procedure does not provide the exact Galerkin projection, since every intermediate product disregards the part orthogonal to S^{P} . Even for the triple product it is remarked that, in general

$$U * (V * W) \neq (U * V) * W \neq (U * W) * V.$$

The order in which the successive Galerkin products are applied affects the result.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Inverse and square root

Inverse and division are also common non-linearities.

For the inversion, one has to determine the expansion coefficients of the inverse U^{-1} of $U(\xi)$,

$$U^{-1}(\xi) = \frac{1}{U(\xi)} = \left(\sum_{k=0}^{P} u_k \Psi_k(\xi)\right)^{-1},$$

such that

$$U^{-1}(\xi)U(\xi) = 1$$
 a.s.

 U^{-1} is sought in S^P and the previous equation needs to be interpreted in a weak sense. Using the Galerkin multiplication tensor, it comes

$$\begin{pmatrix} \sum_{j=0}^{P} C_{j00} u_{j} & \dots & \sum_{j=0}^{P} C_{jP0} u_{j} \\ \vdots & \ddots & \vdots \\ \sum_{j=0}^{P} C_{j0P} u_{j} & \dots & \sum_{j=0}^{P} C_{jPP} u_{j} \end{pmatrix} \begin{pmatrix} u_{0}^{-1} \\ \vdots \\ u_{P}^{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}.$$

Due to truncature error, the above definition corresponds to the pseudo-spectral inverse U^{*-1} of U.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Inverse and square root

1/4 (center) and 1/3 (right). Wiener-Hermite expansions are used.

Extend immediately to the evaluation of U/V

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Inverse and square root

The Galerkin product can also serve to approximate square roots.

Given $U(\boldsymbol{\xi}) > 0$ we have

$$U^{1/2}(\xi)U^{1/2}(\xi) = U(\xi).$$

The approximate $U^{*1/2} \in S^P$ of $U^{1/2}$ solves

$$\begin{pmatrix} \sum_{j=0}^{P} C_{j00} u^{1/2}{}_{j} & \dots & \sum_{j=0}^{P} C_{jP0} u^{1/2}{}_{j} \\ \vdots & \ddots & \vdots \\ \sum_{j=0}^{P} C_{j0P} u^{1/2}{}_{j} & \dots & \sum_{j=0}^{P} C_{jPP} u^{1/2}{}_{j} \end{pmatrix} \begin{pmatrix} u^{1/2}{}_{0} \\ \vdots \\ u^{1/2}{}_{P} \end{pmatrix} = \begin{pmatrix} u_{0} \\ \vdots \\ u_{P} \end{pmatrix}$$

This non-linear system can be solved using standard techniques (Newton-Raphson iterations) Choosing for the initial guess $U^{*1/2}(\xi) = \pm \sqrt{u_0}$ allows for the selection of the positive or negative square root of $U(\xi)$.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Absolute values

Application to the approximation of absolute values

Convergence with N₀ of the pseudo-spectral approximation on S^{No} of $Y(\xi) = |U(\xi)|$ for different $u(\xi)$. Top plots: $\xi \sim N(0, 1)$ and Wiener-Hermite expansions. Bottom plots: $\xi \sim U(-1, 1)$ and Wiener-Legendre expansions.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Other non-linearities

For sufficiently differentiable non-linearities one can rely on Taylor series

$$f(u) = f(\hat{u}) + (u - \hat{u})f'(\hat{u}) + \frac{(u - \hat{u})^2}{2}f''(\hat{u}) + \cdots$$

In the stochastic case, it is common to expand the series about the mean u_0 of U, at which $f'(u_0)$, $f''(u_0)$, \cdots can be evaluated. Successive powers of $\delta U := U - u_0$ can be evaluated in a pseudo-spectral fashion

$$\mathcal{S} \ni F(U) \approx f(u_0) + \delta U f'(u_0) + \frac{\delta U * \delta U}{2} f''(u_0) + \frac{\delta U * \delta U * \delta U * \delta U}{6} f'''(u_0) + \cdots$$

- Convergence of the approximation needs be carefully analyzed.
- Impact of the pseudo spectral error is critical.
- Radius of convergence often unknown.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Other non-linearities

Integration approach for differentiable non-linearities [Debusschere et al, 2004] If $f(\cdot)$ is analytical with derivative $f'(\cdot)$, f can be defined as some integral of f' along a deterministic integration path.

Let $Y(s, \xi)$ be a stochastic processes of $L^2(\Xi, P_{\Xi})$, and consider $G(s, \xi) := f(Y)$:

$$Y=Y(s,\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}}y_k(s)\Psi_k(\boldsymbol{\xi}),\quad G=G(s,\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}}g_k(s)\Psi_k(\boldsymbol{\xi}).$$

Therefore, we have

$$\int_{s_1}^{s_2} \frac{\partial G}{\partial s} ds = \int_{s_1}^{s_2} G' \frac{\partial Y}{\partial s} ds$$
$$\sum_{k=0}^{P} \Psi_k \int_{s_1}^{s_2} \frac{dg_k}{ds} ds = \sum_{k=0}^{P} \Psi_k [g_k(s_2) - g_k(s_1)]$$
$$= \sum_{i=0}^{P} \sum_{j=0}^{P} \Psi_i \Psi_j \int_{s_1}^{s_2} g'_i(s) \frac{dy_j}{ds} ds.$$

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Other non-linearities

The integration path is set such that for all k = 0, ..., P

$$Y(s_1,\xi) = \hat{U}, \quad Y(s_2,\xi) = U,$$
 (1)

we obtain

$$F(U(\boldsymbol{\xi}))_{k} = F(\hat{U})_{k} + \sum_{i=0}^{P} \sum_{j=0}^{P} C_{ijk} \int_{\hat{u}_{j}}^{u_{j}} f'_{i} dy_{j}, \quad \forall k = 0, \dots, P.$$

Provided that

- the PC expansion of $F(\hat{U})$ is known,
- the PC expansion of $F'(\cdot)$ is easily computed along the integration path,

the computation of F(U) amounts to solve a set of coupled ODEs.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Other non-linearities

Example: exponential $f(u) = \exp(u)$. We simply set $Y(s, \xi) = sU(\xi)$, $s_1 = 0$ and $s_2 = 1$. Since $\exp(u)' = u$, we obtain the the set of coupled ODEs:

$$\frac{\mathrm{d}g_k}{\mathrm{d}s} = \sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} C_{ijk} u_i g_k, \quad k = 0, \dots, \mathrm{P},$$

to be integrated up to s = 1 from the initial condition

$$g_k(s=0) = \langle \exp 0, \Psi_k \rangle = \delta_{k,0} \quad k = 0, \dots, P.$$

- Standard techniques for ODEs can be used.
- Integration and stochastic truncation error control is critical.

Proper Generalized Decomposition

Galerkin Approximation of Non-Linearities

Other non-linearities

Non-intrusive projections

• For general non-linearities *F*(*U*, *V*,...) it is possible to proceed by non-intrusive projection techniques:

$$f_k := \frac{\langle F(U, V, \dots), \Psi_k \rangle}{\langle \Psi_k^2 \rangle}.$$
 (2)

• Results in hybrid Galerkin / non-intrusive approaches when used in intermediate step of a Galerkin projection method (case of complex non-linear model).

$$\nabla \cdot (\nu(U)\nabla U) = g$$
 with BCs. (3)

Interest can be questionable.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Table of content

Galerkin Method

Stochastic Galerkin projection

Galerkin Projection of Linear / Non-linear Models

- Linear Models
- Galerkin Approximation of Non-Linearities

Proper Generalized Decomposition

- Definition
- Algorithms
- An example
- Hierarchical Decomposition
- (Damped) Wave equation
- PGD for the Stochastic NS eq.
- Example

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Definition

Separated representation

The rank-*m* PGD approximation of *U* is

[Nouy, 2007, 2008, 2010]

$$U(\boldsymbol{x},\theta) \approx U^{m}(\boldsymbol{x},\theta) = \sum_{\alpha=1}^{m < P} u_{\alpha}(\boldsymbol{x}) \boldsymbol{\lambda}_{\alpha}(\theta), \quad \boldsymbol{\lambda}_{\alpha} \in \mathcal{S}^{P}, \ u_{\alpha} \in \mathcal{V}.$$

Interpretation: U is approximated on

- the stochastic reduced basis {λ₁,..., λ_m} of S^P
- the deterministic reduced basis {*u*₁,...,*u_m*} of *V*

none of which is selected a priori

The questions are then:

- how to define the (deterministic or stochastic) reduced basis ?
- how to **compute** the reduced basis and the *m*-terms PGD of *U*?

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Definition

Optimal *L*₂-spectral decomposition

POD, KL decomposition

$$U^{m}(\boldsymbol{x}, \theta) = \sum_{\alpha=1}^{m} u_{\alpha}(\boldsymbol{x}) \lambda_{\alpha}(\theta) \text{ minimizes } \mathbb{E}\left[\left\| U^{m} - U \right\|_{L^{2}(\Omega)}^{2} \right]$$

The modes u_{α} are the *m* dominant eigenvectors of the kernel $\mathbb{E}[U(\mathbf{x}, \cdot)U(\mathbf{y}, \cdot)]$:

$$\int_{\Omega} \mathbb{E} \left[U(\boldsymbol{x}, \cdot) U(\boldsymbol{y}, \cdot) \right] u_{\alpha}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y} = \beta u_{\alpha}(\boldsymbol{x}), \quad \left\| u_{\alpha} \right\|_{\mathrm{L}^{2}(\Omega)} = 1.$$

The modes are orthonormal:

$$\lambda_{\alpha}(\theta) = \int_{\Omega} U(\boldsymbol{x}, \theta) u_{\alpha}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

However $U(\mathbf{x}, \theta)$, so $\mathbb{E}[u(\mathbf{x}, \cdot)u(\mathbf{y}, \cdot)]$ is not known!

- Solve the Galerkin problem in V^h ⊗ S^{p' < p} to construct {u_α}, and then solve for the {λ_α ∈ S^p}.
- Solve the Galerkin problem in $\mathcal{V}^H \otimes \mathcal{S}^P$ to construct $\{\lambda_\alpha\}$, and then solve for the $\{u_\alpha \in \mathcal{V}^h\}$ with dim $\mathcal{V}^H \ll \dim \mathcal{V}^h$.

See works by groups of Ghanem and Matthies.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Definition

Alternative definition of optimality

 $A(\cdot, \cdot)$ is symmetric positive definite, so U minimizes the energy functional

$$\mathcal{J}(V) \equiv \frac{1}{2}A(V, V) - B(V)$$

We define U^m through

$$\mathcal{J}(\boldsymbol{U}^{m}) = \min_{\{\boldsymbol{u}_{\alpha}\}, \{\boldsymbol{\lambda}_{\alpha}\}} \mathcal{J}\left(\sum_{\alpha=1}^{m} \boldsymbol{u}_{\alpha}\boldsymbol{\lambda}_{\alpha}\right).$$

- Equivalent to minimizing a Rayleigh quotient
- Optimality w.r.t the A-norm (change of metric):

$$\|V\|_A^2 = \mathbb{E}\left[a(V, V)\right] = A(V, V)$$

Galerkin	Method
00000	0

Proper Generalized Decomposition

Definition

Sequential construction:

$$\mathcal{J}(\lambda_{i}u_{i}) = \min_{\boldsymbol{v}\in\mathcal{V},\boldsymbol{\beta}\in\mathcal{S}^{\mathbf{P}}}\mathcal{J}\left(\boldsymbol{\beta}\boldsymbol{v} + \sum_{j=1}^{i-1}\lambda_{j}u_{j}\right) = \min_{\boldsymbol{v}\in\mathcal{V},\boldsymbol{\beta}\in\mathcal{S}^{\mathbf{P}}}\mathcal{J}\left(\boldsymbol{\beta}\boldsymbol{v} + \boldsymbol{U}^{i-1}\right)$$

The optimal couple (λ_i, u_i) solves simultaneously

a) deterministic problem

 $u_i = \mathcal{D}(\lambda_i, U^{i-1})$

$$A(\lambda_i u_i, \lambda_i v) = B(\lambda_i v) - A(U^{i-1}, \lambda_i v), \quad \forall v \in \mathcal{V}$$

b) stochastic problem

$$\lambda_i = \mathcal{S}(u_i, U^{i-1})$$

$$A(\lambda_{i}u_{i},\beta u_{i})=B(\beta u_{i})-A\left(U^{i-1},\beta u_{i}\right),\quad\forall\beta\in\mathcal{S}^{\mathsf{P}}$$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Definition

Sequential construction:

$$\mathcal{J}(\lambda_{i}u_{i}) = \min_{\boldsymbol{v}\in\mathcal{V},\boldsymbol{\beta}\in\mathcal{S}^{\mathbf{P}}}\mathcal{J}\left(\boldsymbol{\beta}\boldsymbol{v} + \sum_{j=1}^{i-1}\lambda_{j}u_{j}\right) = \min_{\boldsymbol{v}\in\mathcal{V},\boldsymbol{\beta}\in\mathcal{S}^{\mathbf{P}}}\mathcal{J}\left(\boldsymbol{\beta}\boldsymbol{v} + \boldsymbol{U}^{i-1}\right)$$

The optimal couple (λ_i, u_i) solves simultaneously

- a) deterministic problem $\begin{aligned} & u_i = \mathcal{D}(\lambda_i, U^{i-1}) \\ & \int_{\Omega} \mathbb{E}\left[\lambda_i^2 k\right] \nabla u_i \cdot \nabla v \mathrm{d} \mathbf{x} = \mathbb{E}\left[-\int_{\Omega} \lambda_i k \nabla U^{i-1} \cdot \nabla v \mathrm{d} \mathbf{x} + \int_{\Omega} \lambda_i f v \mathrm{d} \mathbf{x}\right], \quad \forall v. \end{aligned}$
- b) stochastic problem
 $$\begin{split} &\lambda_{i} = \mathcal{S}(u_{i}, U^{i-1}) \\ &\mathbb{E}\left[\lambda_{i}\beta\int_{\Omega}k\boldsymbol{\nabla}u_{i}\cdot\boldsymbol{\nabla}u_{i}\mathrm{d}\boldsymbol{x}\right] = \mathbb{E}\left[-\beta\left(\int_{\Omega}k\boldsymbol{\nabla}U^{i-1}\cdot\boldsymbol{\nabla}u_{i}\mathrm{d}\boldsymbol{x} + \int_{\Omega}fu_{i}\mathrm{d}\boldsymbol{x}\right)\right], \quad \forall \beta. \end{split}$$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Definition

Sequential construction:

$$\mathcal{J}(\lambda_{i}u_{i}) = \min_{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathbf{P}}} \mathcal{J}\left(\beta v + \sum_{j=1}^{i-1} \lambda_{j}u_{j}\right) = \min_{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathbf{P}}} \mathcal{J}\left(\beta v + U^{i-1}\right)$$

The optimal couple (λ_i, u_i) solves simultaneously

- a) deterministic problem $\begin{aligned} & u_i = \mathcal{D}(\lambda_i, U^{i-1}) \\ & \int_{\Omega} \mathbb{E} \left[\lambda_i^2 k \right] \nabla u_i \cdot \nabla v \mathrm{d} \mathbf{x} = \mathbb{E} \left[-\int_{\Omega} \lambda_i k \nabla U^{i-1} \cdot \nabla v \mathrm{d} \mathbf{x} + \int_{\Omega} \lambda_i f v \mathrm{d} \mathbf{x} \right], \quad \forall v. \end{aligned}$
- b) stochastic problem
 $$\begin{split} &\lambda_i = \mathcal{S}(u_i, U^{i-1}) \\ &\mathbb{E}\left[\lambda_i \beta \int_{\Omega} k \nabla u_i \cdot \nabla u_i \mathrm{d}\mathbf{x}\right] = \mathbb{E}\left[-\beta \left(\int_{\Omega} k \nabla U^{i-1} \cdot \nabla u_i \mathrm{d}\mathbf{x} + \int_{\Omega} f u_i \mathrm{d}\mathbf{x}\right)\right], \quad \forall \beta. \end{split}$$
- The couple (λ_i, u_i) is a fixed-point of:

$$\lambda_i = S \circ D(\lambda_i, \cdot), \quad u_i = D \circ S(u_i, \cdot)$$

 \Rightarrow arbitrary normalization of one of the two elements.

Algorithms inspired from dominant subspace methods Power-type, Krylov/Arnoldi, ...

Galerkin	Method
00000	0

Proper Generalized Decomposition

Algorithms

Power Iterations

- Set *I* = 1
- 2 initialize λ (*e.g.* randomly)
- 3 While not converged, repeat
 - a) Solve: $u = \mathcal{D}(\lambda, U^{l-1})$
 - **b)** Normalize *u*
 - c) Solve: $\lambda = S(u, U^{l-1})$

(5) $I \leftarrow I + 1$, if I < m repeat from step 2

Comments:

- Convergence criteria for the power iterations (subspace with dim > 1 or clustered eigenvalues)
- Usually few (4 to 5) inner iterations are sufficient

(power iterations)

(日) (日) (日) (日) (日) (日) (日)

Galerkin	Method
00000	0

Proper Generalized Decomposition

(optional)

Algorithms

Power Iterations with Update

- **(1)** Same as Power Iterations, but after (u_l, λ_l) is obtained (step 4) update of the stochastic coefficients:
 - Orthonormalyze $\{u_1, \ldots, u_l\}$
 - Find {λ₁,...,λ_l} s.t.

$$A\left(\sum_{i=1}^{l} u_i \lambda_i, \sum_{i=1}^{l} u_i \beta_i\right) = B\left(\sum_{i=1}^{l} u_i \beta_i\right), \quad \forall \beta_{i=1,\ldots,l} \in \times \mathcal{S}^{\mathsf{P}}$$

Continue for next couple

Comments:

- Improves the convergence
- Low dimensional stochastic linear system $(I \times I)$
- Cost of update increases linearly with the order / of the reduced representation

Galerkin	Method
00000	0

Proper Generalized Decomposition

(Arnoldi iterations)

Algorithms

Arnoldi, Full Update version

- Set *I* = 0
- (2) Initialize $\lambda \in S^{P}$
- 3 For *l*′ = 1, 2, . . .
 - Solve deterministic problem $u' = \mathcal{D}(\lambda, U')$
 - Orthogonalize: $u_{l+l'} = u' \sum_{j=1}^{l+l'-1} (u', u_j)_{\Omega}$
 - If $\|u_{l+l'}\|_{L^2(\Omega)} \leq \epsilon$ or l+l' = m then break
 - Normalize $u_{l+l'}$
 - Solve $\lambda = S(u_{l'}, U')$

(Upda)
(Upda)

$$A\left(\sum_{i=1}^{l} u_i \lambda_i, \sum_{i=1}^{l} u_i \beta_i\right) = B\left(\sum_{i=1}^{l} u_i \beta_i\right), \quad \forall \beta_{i=1,\dots,l} \in S^{P}$$

6 If l < m return to step 2.

Galerkin Method	Galerkin Projection of Lir
000000	000000000000000000000000000000000000000
Algorithms	

Proper Generalized Decomposition

Summary

dimension is dim \mathcal{V}^h dimension is dim \mathcal{S}^P

- Resolution of a sequence of linear stochastic equations
- Update problems: system of linear equations for stochastic random variables

ear / Non-linear Models

dimension is $m \times \dim S^P$

To be compared with the Galerkin problem dimension

 $\dim \mathcal{V}^h \times \dim \mathcal{S}^{\mathrm{P}}$

Weak modification of existing (FE/FV) codes (weakly intrusive)

An example

Test case definition : 25 x 0.695 km

h2	Δ Head (m)	Expectation	Range	distribution
	$\Delta h_{1,2}$	+51	±10	Uniform
hi	$\Delta h_{1,3}$	+21	± 5	Uniform
1	$\Delta h_{1,6}$	-3	±2	Uniform
	$\Delta h_{2,5}$	-110	± 10	Uniform
	$\Delta h_{3,4}$	-160	± 20	Uniform

Uncertain conductivities

Layer	k _i median	<i>k</i> i min	<i>k</i> i max	distribution
Dogger	25	5	125	LogUniform
Clay	3 10 ⁻⁶	3 10 ⁻⁷	3 10 ⁻⁵	LogUniform
Limestone	6	1.2	30	LogUniform
Marl	3 10 ⁻⁵	1 10 ⁻⁵	$1 \ 10^{-4}$	LogUniform

Parameterization

• 9 independent r.v. $\{\xi_1, \ldots, \xi_9\} \sim U[0, 1]^9$

• dim
$$S^{P} = P + 1 = (9 + N_{0})!/(9!N_{0}!)$$

- $N_e \approx 30,000$ finite elements
- dim(\mathcal{V}^h) \approx 15,000
- Dimension of Galerkin problem: 8.2 10⁵ (No = 2), 3.3 10⁶ (No = 3)

Galerkin	Method
00000	0

Proper Generalized Decomposition

An example

Convergence

Galerkin residual (left) and error (right) norms as a function of m (No = 3)

Galerkin	Method
00000	0

Proper Generalized Decomposition

An example

CPU times (No = 3)

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Hierarchical Decomposition

Full separation

So far, deterministic / stochastic separation:

$$U^m(\boldsymbol{x},\boldsymbol{\xi}) = U^m(\boldsymbol{x},\xi_1,\ldots,\xi_N) = \sum_{r=1}^m u_r(\boldsymbol{x})\lambda_r(\xi_1,\ldots,\xi_N),$$

where $\lambda_r(\xi) \in S$. Does not address high-dimensionality issue whenever N is large.

However, if the ξ_i are independent, S has a tensor product structure,

$$\mathcal{S}=\mathcal{S}_1\otimes \cdots \otimes \mathcal{S}_N,$$

we can think of a decomposition of the form

$$U^{m}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{r=1}^{m} u_{r}(\boldsymbol{x})\lambda_{r}^{1}(\boldsymbol{\xi}_{1})\ldots\lambda_{r}^{N}(\boldsymbol{\xi}_{N}),$$

where now $\lambda_r^i(\xi_i) \in S_i$.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Hierarchical Decomposition

Full separation

Extension of the previous algorithms for the computation of

$$U^{m}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{r=1}^{m} u_{r}(\boldsymbol{x})\lambda_{r}^{1}(\xi_{1})\dots\lambda_{r}^{N}(\xi_{N}),$$

is straightforward:

- same deterministic problems
- stochastic and update problems for the (separated) λ_r are substituted with alternated direction resolutions: iterations over sequence of one-dimensional problems.

For instance, stochastic problem(s) in direction *i*: find $\lambda \in S_i$ such that

$$\mathbb{E}\left[\left(\lambda_{r}^{1}\dots\boldsymbol{\lambda}\dots\lambda_{r}^{N}\right)\left(\lambda_{r}^{1}\dots\boldsymbol{\beta}\dots\lambda_{r}^{N}\right)\int_{\Omega}\boldsymbol{k}\boldsymbol{\nabla}\boldsymbol{u}_{r}\cdot\boldsymbol{\nabla}\boldsymbol{u}_{r}\mathrm{d}\boldsymbol{x}\right]$$
$$=\mathbb{E}\left[-\left(\lambda_{r}^{1}\dots\boldsymbol{\beta}\dots\lambda_{r}^{N}\right)\left(\int_{\Omega}\boldsymbol{k}\boldsymbol{\nabla}\boldsymbol{U}^{r-1}\cdot\boldsymbol{\nabla}\boldsymbol{u}_{r}\mathrm{d}\boldsymbol{x}+\int_{\Omega}\boldsymbol{f}\boldsymbol{u}_{r}\mathrm{d}\boldsymbol{x}\right)\right],\quad\forall\boldsymbol{\beta}\in\mathcal{S}_{r}.$$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Hierarchical Decomposition

Full separation

Clearly, using

$$U^{m}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{r=1}^{m} u_{r}(\boldsymbol{x})\lambda_{r}^{1}(\xi_{1})\cdots\lambda_{r}^{N}(\xi_{N}),$$

we trade convergence with complexity reduction.

This can be mitigated using using a R_{λ} -rank approximation of the stochastic coefficients:

$$U^{m}(\boldsymbol{x},\boldsymbol{\xi}) = \sum_{r=1}^{m} u_{r}(\boldsymbol{x}) \left(\sum_{r'=1}^{R_{\lambda}} \lambda_{r,r'}^{1}(\xi_{1}) \dots \lambda_{r,r'}^{N}(\xi_{N}) \right).$$

with a greedy-type approximation of low rank approximation of λ_r .

- Extension of the algorithms is immediate
- R_{λ} can be made rank dependent
- Efficient implementation requires separated representation of the operator.

Galerkin	Method
00000	0

Proper Generalized Decomposition

Hierarchical Decomposition

An example: diffusion

 $\bullet~$ Independent random conductivities over 7 sub-domains, with same distribution (log-normal): N = 7

•
$$S_{i=1,7} = \Pi_{10}(\mathbb{R})$$
, so dim $S = 11^7$

Galerkin Projection of Linear / Non-linear Models

(Damped) Wave equation

Wave equation (Deterministic)

Consider the deterministic wave equation,

$$-\omega^2 \rho u(\boldsymbol{x}) - \boldsymbol{\nabla} \cdot (\tilde{\kappa} \boldsymbol{\nabla} u(\boldsymbol{x})) = f(\boldsymbol{x}), \qquad \text{in}\Omega$$
$$u(\boldsymbol{x} \in \partial\Omega) = 0$$

- ω is the frequency
- ρ the density
- $\tilde{\kappa} \doteq \kappa (1 i\beta\omega) \in \mathbb{C}$ the wave velocity with $\kappa, \beta > 0$

Let $L_2(\Omega) = L_2(\Omega, \mathbb{C})$ with inner product and norm

$$(u,v)_{\Omega} = \operatorname{Re}\left(\int_{\Omega} u^*(\boldsymbol{x})v(\boldsymbol{x})d\Omega\right), \quad \|u\|_{L_2(\Omega)}^2 = (u,u)_{\Omega},$$

The weak formulation: Find $u \in H_0^1(\Omega, \mathbb{C})$ such that

$$a(u,v)-b(v)=0 \quad \forall v \in H_0^1(\Omega),$$

with the bilinear and linear forms

$$a(u, v) = \operatorname{Re} \left[-\omega^{2} \int_{\Omega} u^{*} v d\Omega + \int_{\Omega} \tilde{\kappa} \nabla u^{*} \cdot \nabla v d\Omega \right], \quad b(v) = \operatorname{Re} \left[\int_{\Omega} f^{*} v d\Omega \right].$$

Galerkin Projection of Linear / Non-linear Models

(Damped) Wave equation

Wave equation (Stochastic version)

Take now ω , ρ and κ as second order random variable defined on a probability space $\mathcal{P} = (\Theta, \Sigma_{\Theta}, \mu)$. We extend $L_2(\Omega)$ and $H_0^1(\Omega)$ to $L_2(\Omega, \Theta)$ and $H_0^1(\Omega, \Theta)$ by tensorization, and we assume

$$U(\mathbf{x}, \theta) \in L_2(\Omega, \Theta) \Leftrightarrow \mathbb{E}\left[(U(\cdot), U(\cdot))_{\Omega}\right] < \infty.$$

Variational form of the stochastic wave equation Find $U \in H_0^1(\Omega, \Theta)$ such that

$$A(U, V) - B(V) = 0, \quad \forall V \in H_0^1(\Omega, \Theta),$$

where

$$A(U, V) = \mathbb{E}\left[\operatorname{Re}\left[-\omega^{2}(\theta)\int_{\Omega}U^{*}(\theta)V(\Theta)d\Omega + \int_{\Omega}\kappa(\theta)\nabla U^{*}(\theta)\cdot\nabla V(\theta)\ d\Omega\right]\right],$$

and

$$B(V) = \mathbb{E}\left[\operatorname{Re}\left[\int_{\Omega} f^* V(\theta) \, d\Omega\right]\right].$$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

(Damped) Wave equation

PGD approximation

We seek for $U \in H_0^1(\Omega, \Theta) = H_0^1(\Omega) \otimes L_2(\Theta)$ has the separated form

$$U(\boldsymbol{x},\theta) = \sum_{r=0}^{r=\infty} u_r(\boldsymbol{x})\lambda_r(\theta), \quad u_r \in H^1_0(\Omega), \ \lambda_r \in L_2(\Theta),$$

following the PGD approach based on the deterministic and stochastic problems

$$\begin{split} u_{R} &= D(U^{R-1}, \lambda_{R}): \quad A(U^{R-1} + u_{R}\lambda_{R}, v\lambda_{R}) - B(v\lambda_{R}) = 0, \forall v \in H_{0}^{1}(\Omega) \quad \text{Deter. problem} \\ \lambda_{R} &= S(U^{R-1}, u_{R}): \quad A(U^{R-1} + u_{R}\lambda_{R}, u_{R}\beta) - B(u_{R}\beta) = 0, \forall \beta \in L_{2}(\Theta) \quad \text{Stoch. problem} \end{split}$$

and update problem: given $u_{r=1,...,R}$ compute $\lambda_{r=1,...,R}$ such that

$$A\left(\sum_{r=0}^{R} u_r \lambda_r, u_{r'} \beta\right) - B(u_{r'} \beta) = 0, \quad \forall \beta \in L_2(\Theta) \text{ and } r' = 1, \dots, R.$$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

(Damped) Wave equation

PGD-Arnoldi algorithm

Assume rank-R approximation has been obtained.

- **1** Initialization: set $\lambda \in L_2(\Theta)$, l = 0
- 2 Arnoldi subspace generation:

• Set
$$w = D(U^R, \lambda)$$

• For $r = 1, ..., R + I w \leftarrow (w, u_r)$

- If $h = (w, w)_{\Omega} < \varepsilon$ break
- Set $l \leftarrow l+1$, $u_{R+l} = w/h$

• Set
$$\lambda = S(U^R, u_{R+I})$$

- Repeat for next Arnoldi vector
- **3** Update solution: set $R \leftarrow R + I$ and solve

$$A\left(\sum_{r=0}^{R} u_r \lambda_r, u_{r'}\beta\right) - B(u_{r'}\beta) = 0, \quad \forall \beta \in L_2(\Theta) \text{ and } r' = 1, \dots, R.$$

④ Check residual to restart at step 1 or stop

Advantage: limited number of deterministic problem solves to generate the deterministic basis.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

(Damped) Wave equation

Stochastic parametrization

We introduce a finite set of N independnt real-valued r.v. $\boldsymbol{\xi} \doteq (\xi_1 \dots \xi_N)$ with uniform distribution on $\Xi \doteq \mathbb{1}_N$. The random frequency, density and stiffness are parametrized using $\boldsymbol{\xi}$,

$$(\omega, \kappa, \rho)(\theta) \longrightarrow (\omega, \kappa, \rho)(\boldsymbol{\xi}(\theta)),$$

and U is sought in the image probability space:

$$H_0^1(\Omega, \Xi) \ni U(\boldsymbol{x}, \boldsymbol{\xi}(\theta)) \approx \sum_{r=1}^R u_r(\boldsymbol{x}) \lambda_r(\boldsymbol{\xi}(\theta)).$$

- U(x,) is expected to be smooth a.s.: need for a limited number of spatial modes to span the stochastic solution space,
- U(·, ξ) can exhibit steep and complex dependences with respect to the input parameters.

The complexity of the mapping $\boldsymbol{\xi} \in \Xi \mapsto U(\cdot, \boldsymbol{\xi}) \in H_0^1(\Omega)$ reflects in the stochastic coefficients $\lambda_r(\boldsymbol{\xi})$ and calls for **appropriate discretization at the stochastic level**.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

(Damped) Wave equation

stochastic multi-resolution framework

Presently, we use **piecewise polynomial approximations** at the stochastic level:

- Ξ is adaptively decomposed into sub-domains through a sequence a dyadic (1d) partitions
- A tree structure is used to manage the resulting stochastic space
- Multi-resolution analysis is used to control the local adaptation (anisotropic refinement of the partition of Ξ)
- Stochastic and update problems are solved independently over the sub-domains (efficient parallelization)

(see [Tryoen, LM and Ern, SISC 2012])

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

(Damped) Wave equation

PGD-Arnoldi with Adaptation at the Stochastic level

Given the approximation U^r and a stochastic space S^r

- **1** Arnoldi iterations to generate orthonormal $u_{r+1}, \ldots u_{r+l}$, using $\lambda \in S^r$
- 2 set $r \leftarrow r + I$
- While not satisfying accuracy criterion, repeat
 - Solve the update problem for {λ₁,..., λ_r} in S^r
 - Enrich adaptively S^r
- ④ Compute residual norm
- If not converge restart at step 1.

Observe:

- Same approximation space for all stochastic coefficients (ease implementation and favor parallelization)
- Continuous enrichment, no coarsening
- Successive Arnoldi spaces generated using an coarse stochastic space! (in fact robust)
- Accuracy requirement should balance stochastic discretization and reduced space errors.

Galerkin	Method
00000	0

Proper Generalized Decomposition

(Damped) Wave equation

Example

- $\log(\kappa) \sim U[-4:-2]$
- $\omega \sim U[0.5, 1]$
- $\rho = 1$ and $\beta = 0.05$
- Third order (Legendre) expansion.

Galerkin Method	Galerkin Projection of Linear / No	n-linear Models	Proper Generalized Decompositi	ion 000000000000000000000000000000000000
(Damped) Wave equat	ion			
Example				
Selected	Arnoldi modes: real part	(top) and imagin	ary part (bottom)	
<i>r</i> = 1	<i>r</i> = 3	<i>r</i> = 5	<i>r</i> = 15	r = 25
<i>r</i> = 1	<i>r</i> = 3	<i>r</i> = 5	<i>r</i> = 15	r = 25
	Nor Nor Nor Nor Nor Nor Nor Nor			

Galerkin	Method
00000	0

Proper Generalized Decomposition

(Damped) Wave equation

Example

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

PGD for the Stochastic NS eq.

Stochastic Navier-Stokes equations

Consider the steady, incompressible Navier-Stokes equations

$$\boldsymbol{U}(\theta) \boldsymbol{\nabla} \boldsymbol{U}(\theta) = -\boldsymbol{\nabla} \boldsymbol{P}(\theta) + \nu(\theta) \nabla^2 \boldsymbol{U}(\theta) + \boldsymbol{f}(\theta)$$
 in Ω_{θ}

$$\boldsymbol{\nabla} \cdot \boldsymbol{U}(\theta) = \mathbf{0}$$
 in Ω ,

$$oldsymbol{U}(heta)=0$$
 on $\partial\Omega$

in a bounded (2d) domain Ω .

In view of PGD of the solution, we need to consider (mainly)

- 1 non-linear character (increases when $\nu \downarrow 0$)
- 2 enforcement of the divergence free constraint
- stabilization (upwinding) due to the convective term

None of these will be really address here, simply numerical experiments!

```
[Tamellini, LM, Nouy, SISC, 2014]
```


Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

PGD for the Stochastic NS eq.

Weak form

Deterministic space $\mathcal{V} = H^1_{0, div}(\Omega)$.

Weak formulation: Find $U \in \mathbb{X} \doteq \mathcal{V} \otimes \mathcal{S}$ such that

$$\mathbb{E}\left[\int_{\Omega}\left[\left(U(\theta)\nabla U(\theta)\right)\cdot V(\theta)+\nu(\theta)\nabla U(\theta)\nabla V(\theta)-F(\theta)\cdot V(\theta)\right]dx\right] \quad \forall V\in\mathbb{X}.$$

The deterministic problem $u = D(\lambda, U^m)$ writes: $\forall v \in \mathcal{V}$

$$\begin{split} \int_{\Omega} \left(\mathbb{E} \left[\lambda^{3} \right] u \nabla u + u \nabla \bar{u}_{m}(\lambda) + \bar{u}_{m}(\lambda) \nabla u \right) \cdot v dx &+ \int_{\Omega} \mathbb{E} \left[\nu \lambda^{2} \right] \nabla u \nabla v dx \\ &= \int_{\Omega} \mathbb{E} \left[\lambda (F - U^{m} \nabla U^{m}) \right] \cdot v dx - \int_{\Omega} \mathbb{E} \left[\nu \lambda \nabla U^{m} \right] \nabla v dx. \end{split}$$

where $\bar{u}_m(\lambda) = \mathbb{E} [\lambda^2 U^m]$. Stochastic problem $\lambda = S(u, U^m)$ writes: $\forall \beta \in S$

$$\mathbb{E}\left[\lambda^{2}\beta\right]\int_{\Omega}(u\nabla u \cdot u)dx + \mathbb{E}\left[\lambda\beta\int_{\Omega}(u\nabla U^{m} + U^{m}\nabla u) \cdot udx\right] + \int_{\Omega}\mathbb{E}\left[\nu\lambda\beta\right]\nabla u\nabla udx$$
$$= \mathbb{E}\left[\beta\int_{\Omega}(F - U^{m}\nabla U^{m}) \cdot udx\right] - \mathbb{E}\left[\beta\int_{\Omega}\nu\nabla U^{m}\nabla udx\right].$$

PGD for the Stochastic NS eq.

Complexity

- Resolution of a sequence of deterministic problems, NS + Lin. term and deflated rhs
 - dimension is $\dim \mathcal{V}^h$
- Resolution of a sequence of quadratic stochastic equations

dimension is $\dim \mathcal{S}$

Update problems: system of quadratique equations for stochastic random variables

dimension is $m \times \dim \mathcal{S}$

• To be compared with the Galerkin problem dimension

 $\dim \mathcal{V}^h \times \dim \mathcal{S}$

Weak modification of existing (FE/FV) codes (weakly intrusive)

Galerkin	Method
00000	0

Example

Stochastic discretization:

• **Parametrization** of $\nu(\theta)$ and $F(\theta)$ using N i.i.d. random variables:

$$\boldsymbol{\xi} = \{\xi_1, \dots, \xi_N\} \sim N(0, l^2).$$

 ${\ensuremath{\, \bullet \,}}$ Wiener-Hermite polynomials for the basis for ${\ensuremath{\mathcal S}}$

$$\lambda(\theta) = \sum_{\alpha} \lambda_{\alpha} \Psi_{\alpha}(\boldsymbol{\xi}(\theta)),$$

• Truncature to (total) polynomial degree No:

$$\dim \mathcal{S} = \frac{(\mathrm{No} + \mathrm{N})!}{\mathrm{No}!\mathrm{N}!}.$$

Galerkin	Method
00000	0

Proper Generalized Decomposition

0.9

3.0

0.7 0.6

0.5 0.4 0.3 0.2 0.1

Example

Case of a deterministic forcing and a random (Log-normal) viscosity:

$$\nu(\theta) = \frac{1}{200} \exp\left(\frac{\sigma_{\nu}}{\sqrt{N}} \sum_{i=1}^{N} \xi_i(\theta)\right) \ (+10^{-4}), \quad \xi_i \sim N(0, 1) \ i.i.d.$$

Same problem but for parametrization involving N Gaussian R.V. Galerkin solution for N = 1 and No = 10 (Wiener-Hermite expansion)

Mean and standard deviation of U^{G} rotational.

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Example

First PGD-Arnoldi modes for $\mathrm{N}=1$ and $\mathrm{No}=10$

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Example

Convergence of PGD solution N = 1 and No = 10

Convergence with rank of resiudal and error norms; POD coefficients at m = 15 (right)

Galerkin	Method
00000	0

Proper Generalized Decomposition

Example

Stochastic forcing **F** : Hodge's decomposition

$$\boldsymbol{F}(\boldsymbol{x}, \theta) \approx \boldsymbol{F}^{\mathrm{N}}(\boldsymbol{x}, \boldsymbol{\xi}(\theta)) = \boldsymbol{f}^{0} + \sum_{k=0}^{\mathrm{N}} \sqrt{\gamma_{k}} \boldsymbol{f}^{k}(\boldsymbol{x}) \xi_{k}(\theta).$$

KL modes of the forcing:

Forcing modes for L = 1, $\sigma/f_{\omega}^0 = 0.2$

Galerkin	Method
00000	0

Example

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

First PGD-Arnoldi modes

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Example

Results at $\overline{\nu} = 1/50$: No = 3, N = 11, P = 364

Essentially < 50 Navier-Stokes solves!

Galerkin	Method
00000	0

Proper Generalized Decomposition

Example

Residual computation:

- computation of the residual in $H_{0,div}^1(\Omega)$
- need to reconstruct the pressure
- 2 alternatives: apply PGD to the pressure unknown, given the reduced velocity approximation, or recycle the pressure fields associated to the enforcement of the divergence-free constraint during the Arnoldi process as a reduced pressure basis.

Galerkin	Method
00000	0

Example

Galerkin Projection of Linear / Non-linear Models

Proper Generalized Decomposition

Questions & Discussion

