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Objectives of the lecture
o Basic principle of stochastic Galerkin projection

o Discuss derivation and elementary building blocks of the Galerkin projection
o Galerkin linear models and evaluation of non-linearities
o PGD and reduced basis methods.
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Stochastic Galerkin projection

Galerkin projection

o Weak solution of the stochastic problem M(U(¢); D(€)) =0
o Needs adaptation of deterministic codes
o Potentially more efficient than NI techniques.

o Better suited to improvement (error estimate, optimal and basis reduction,
thanks to functional analysis.
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Stochastic Galerkin projection

Stochastic discretization

Let S* C L3(Z, p;) defined as

SP = span{wg,
No.

B \UP}7
where the {W,} are orthogonal functionals in &, e.g. a PC basis truncated to an order

SP is called the stochastic approximation space
We seek for the approximate stochastic model solution in V © SP.
P
UE) = UP(&) = D ukWk(€).
k=0
Inserting U in the weak formulation yields the stochastic residual

(M(U"(€): D(8)), B(€)) = (R(U"), B) .
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Stochastic Galerkin projection

Galerkin projection

[Ghanem & Spanos, 1991]

(M(U"(€): D(€)), B&)) = (R(U"). B) -
In general, one cannot find UP € V ® SP such that

(R(UP),B) =0 VB € L2(Z,pg).
It is then required that R(U") is orthogonal to the stochastic approximation space:

(M(U"(€): D(€)), B(€)) =0 VB es".

o This weak formulation corresponds to the stochastic Galerkin formulation.
SP (see examples later).

o The actual formulation is obtained in practice by projecting all model equations on
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Stochastic Galerkin projection

The Galerkin projection results in a set of P + 1 coupled problems for the stochastic
modes uy of the solution.

Find {Uk7k = 07 B ,P“F 1} (S VP+1 such that
P
<M (Z Uk (8); D(€)> ,W/(£)> =0, /=0,...,P.
k=0

o The size of the Galerkin problem increases with P.
o Recall that P = 1 = (N + No)!/N!Nol! for polynomial truncation at order No.

o This can be very costly for complex problems requiring large parametrization and
large expansion order.

o Projections on the W, of the model equations can be problematic in presence of
non-linearities.
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Stochastic Galerkin projection

The Galerkin projection for the elliptic problem:
Find U(x, &) € H} @ L2(=, P=) such that

A(U, V;D) = B(V) WV(x,£) € H} ® L3(Z, P=),

where

AU, V; D):]EUQ u(x,g)VU(x,g).VV(x,g)dx], B(V):]EUQ F(x,€)V(x,€)dx|.

Introducing the PC expansion of U, it comes the coupled set of deterministic problems:
Find {ux}k—o,....p € (H§)"*" such that

P
> aw(u, v) =bk(v) Vv eH),k=0,...,P,
=0

where

a(u,v) = /Q E[o(x, E) V() V(&) VU-Vvdx, by(v) = /Q E[£(x, €)Wy (€)]v(x)dx.

G@
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Stochastic Galerkin projection

Galerkin projection of discrete deterministic problems

The previous development can be applied to models discretized at the deterministic
level.

Seeking for for U(¢) ~ U” € R™ ® SP, we obtain Find
{ug, k=0,...,P+1} € (R™)P+! such that

P
<Mh <Z UV (8); D(£)> ,W/(§)> =0, /=0,...,P.

k=0

For many models, apply the stochastic discretization before the deterministic
discretization results in the same Galerkin problem as proceeding the reverse way,
provided that V" is independent of £. Exceptions include, e.g.,

o Lagrangian formulations towm s ox, sce 20091,
o treatment of geometric uncertainties.

G@
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@ The linear Galerkin problem couples all the stochastic modes u; € R™ of the
stochastic solution.

o Itis not possible in general to compute independently the components u;.
o The size of the spectral problem is large: m x dimS? = m x (P + 1).
o Resolution of the linear Galerkin system can be demanding.

o An understanding of the block structured system is instructive to design and apply
well-suited numerical methods.
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Linear Models

N = 4-dim S? = 35-5S = 0.58 N = 6-dim SP = 84-S = 0.41

N = 8-dimS? = 165-S = 0.31 N = 10-dim S* = 286-S = 0.23

lllustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks [Z]l-/-

that are generally non-zero appear as black squares.




Linear Models

No = 2-dim S = 21-S = 0.52 No = 3-dim S* = 56-S = 0.49

No = 5-dim §* = 252-S = 0.55

lllustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks
[A i that are generally non-zero appear as black squares.




o Examples above assumes that [A](£) has a full spectrum in SP.

o When [A](&) has a first-order expansion, the block structure of the linear spectral
problem becomes even sparser.

o This behavior motivates the selection, whenever possible, of an approximation
based on a first order operator.
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No = 2-dimSP = 21-S=0.184

No = 3-dim S* = 56-S = 0.084

.. .
%
No = 4-dim S* = 126-S = 0.043

No = 5-dim S? = 252-S = 0.024

Case of a linear stochastic operator [A](£) having a first-order expansion.
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Linear Models

o The main difficulty in solving discrete linear spectral problems is the size of the
system.

o The structure and sparsity of the linear Galerkin problem suggests iterative
solution strategies.

o lterative solvers (e.g. conjugate gradient techniques for symmetric systems, and
Krylov subspace methods) can be used.

@ The efficiency of iterative solvers depends on the availability of appropriate
preconditioners which need be adapted to the Galerkin problem.

o Construction of the preconditioners to exploit the block-structure of the linear
Galerkin problem.
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Galerkin Approximation of Non-Linearities

G@

Many models involve non-linearities of various types and their treatment is critical in
stochastic Galerkin methods

Let {W,(€)}h_, be an orthogonal basis of S* C L»(Z, P=), and f a non-linear
functional u, v, .. .:

uv, - €R—f(u,v,...) €ER.

For random arguments, U(€), V(£),--- € R® SP, we generally have
f(U,V,...)=: G(¢&) ¢ R®SP, butif G(¢) € R® Ly(Z, P=) it has an orthogonal
projection on SP,

(F(U, V), W)
(V)

The problem is therefore to derive efficient strategies to compute the expansion
coefficients g, of G(£) from the expansion coefficients of its arguments U(¢), V(€),. ...

P
GE)~G=) oV, k=
k=0
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Galerkin Approximation of Non-Linearities

The product of two quantities appears in many models

It corresponds to the case G(&)
expansions. Clearly,

W(g) = U(g)V(¢) for U, V € SP having known

P P
W(E) =D uwi(&)wi(€).

i=0 /:0

and in general W(¢) ¢ SP though itis in Lo(=, P=). Therefore, W, the orthogonal
projection of W on SP, has expansion coefficients

W\II
Wy = k

P P
ZZU,‘V]C,'I'/(.

i=0 j=0
and is denoted U * V

The result of the orthogonal projection of UV is called the Galerkin product of U and V
UV orthogonal to S?

The Galerkin product introduces truncation errors by disregarding the components of
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Galerkin Approximation of Non-Linearities

Higher order polynomial non-linearities are also frequent.

Consider first the triple product G(¢) = U(&) V(&) W(€) One can again perform an
exact Galerkin projection of the triple product:

P P P
OVW =" awnWm=> W [ > Tumuyviw, |
m=0 m=0  \jk/=0

A A )
/ (WmWm)

o This exact Galerkin projection of the triple product involves the fourth order
tensor Tipm.

o Tim is sparse with many symmetries .

o However, computation and storage of T, becomes quickly prohibitive when P
increases.

o The exact Galerkin projection can hardly be extended further to higher order
polynomial non-linearities.

G DX
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Galerkin Approximation of Non-Linearities

It is often preferred to rely on approximations for polynomial non-linearities of order
larger than 2. For the triple product, an immediate approximation is

OVW ~ U (V + W) = UVW.

This strategy can be extended to higher degree polynomial non-linearities by using
successive Galerkin products. For instance,

ABC...D~Ax(B*(Cx(...xD))).
This procedure does not provide the exact Galerkin projection, since every
intermediate product disregards the part orthogonal to SP. Even for the triple product it
is remarked that, in general

Ux (VW) £ (Ux V)« W #£(Ux W)= V.

The order in which the successive Galerkin products are applied affects the result.

PAN &4




Galerkin Approximation of Non-Linearities

Inverse and division are also common non-linearities.
of U(§),

For the inversion, one has to determine the expansion coefficients of the inverse U~

—1
ey (s
UTNO) = g = (kg_%ukwk(s)> ,
such that

U='(euE) =1 as.
U~ is sought in S? and the previous equation needs to be interpreted in a weak
sense. Using the Galerkin multiplication tensor, it comes
P P —1
320 Cjooy 2 j—0 Cjrolj Y 1
>0 Cory S Crety )\

0
Due to truncature error, the above definition corresponds to the pseudo-spectral
inverse U*~1of U.
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Pseudo-spectral approximation at different orders of the inverse Y (&) = u—1 (&) ofUE) =
1/4 (center) and 1/3 (right). Wiener-Hermite expansions are used.

14+ agwith & ~ N(0,1): o = 1/5 (left),
Extend immediately to the evaluation of U/V
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Given U(&) > 0 we have

The Galerkin product can also serve to approximate square roots.

U'2(€)U'2(¢) = U(€).
The approximate U*'/2 ¢ SP of U'/2 solves
Si0 Cioou™/?;

P 1/2
>0 Gieou' /% u'’2g
P~ 1/2

Ej:o C]OPU //

Uo

Z}):o Cippu'/?; u'/?p up
This non-linear system can be solved using standard techniques (Newton-Raphson
iterations) Choosing for the initial guess U*1/2(¢) = +./lp allows for the selection of
the positive or negative square root of U(&).

G@
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Application to the approximation of absolute values

u@§) =¢

u) =1+¢/2

y&

¥

(&)

(&)

G@
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Wiener-Hermite expansions. Bottom plots: & ~ /(—1, 1) and Wiener-Legendre expansions.

Convergence with No of the pseudo-spectral approximation on SNo of Y(€) = |U(&)] for different u(&). Top plots: £ ~ N(0, 1) and



For sufficiently differentiable non-linearities one can rely on Taylor series

2
f(u) = f(0) + (u— D) (0) + uf”(f/) + o
In the stochastic case, it is common to expand the series about the mean v of U, at
which f'(up), "’ (uUp), - - - can be evaluated.
Successive powers of §U := U — yy can be evaluated in a pseudo-spectral fashion

sU=x6 SUx8Ux 46
S5 F(U) ~ F(up) + SUF (ug) + #f”(uo) + Wf’"(uo) oo
o Convergence of the approximation needs be carefully analyzed.
o Impact of the pseudo spectral error is critical.

o Radius of convergence often unknown.
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Integration approach for differentiable non-linearities [Debusschere et al, 2004]
If 7(-) is analytical with derivative f/(-), f can be defined as some integral of " along a
deterministic integration path.

Let Y(s, £) be a stochastic processes of L2(=, P=), and consider G(s, £) := f(Y):

P P
Y =Y(s,8) =D w(s)Uk(€), G=G(s,€) =D g(s)Wk(£).

pard k=0
Therefore, we have
So S2
G, _ a2 4s
s Os 51 ds
P s2 d P
Zwk/ diskds = Z\l’k [gk(sz) _gk(s1 )]
k=0 7S k=0
P P Sp dy-
_ ZZ\U’.\U. g{(s)—/ds.
/ " ds
i=0 j=0 St
o &5 = = E 9DAQC



The integration path is set such that forall k = 0,...,P

Y(S17£) - 05 Y(327£) - Ua
we obtain

P
FU©) = FO)+ Y

P uj

C,‘jk/ f,-’dy,-, vVk=0,...,P
i=0 j=0 Y

Provided that

o the PC expansion of F((J) is known,

o the PC expansion of F/() is easily computed along the integration path,

the computation of F(U) amounts to solve a set of coupled ODEs.

G@
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Example: exponential f(u) = exp(u).
We simply set Y(s,&) = sU(€), sy =0and s, = 1.
Since exp(u)’ = u, we obtain the the set of coupled ODEs:

P P
dgk
d_gszzzcijkuigkz k—oy , P,
i=0 j=0
to be integrated up to s = 1 from the initial condition

k(s =0) = (exp 0, Wx) = &k 0

o Standard techniques for ODEs can be used.

o Integration and stochastic truncation error control is critical.

k=0,...,P.
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Non-intrusive projections

o For general non-linearities F(U, V,...) it is possible to proceed by non-intrusive
projection techniques:

L (FUV,. w0
-

. ()

(Vo)
o Results in hybrid Galerkin / non-intrusive approaches when used in intermediate
step of a Galerkin projection method (case of complex non-linear model).

V - (v(U)VU) = g with BCs.
o Interest can be questionable.

@)
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(@ Galerkin Method
o Stochastic Galerkin projection

Q Galerkin Projection of Linear / Non-linear Models
o Linear Models
o Galerkin Approximation of Non-Linearities

Q Proper Generalized Decomposition
o Definition
o Algorithms
o An example
o Hierarchical Decomposition
o (Damped) Wave equation
o PGD for the Stochastic NS eq.
o Example
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The rank-m PGD approximation of U is

[Nouy, 2007, 2008, 2010]
m<P
Ux,0) = U"(%,0) = > ta(¥)Xa(0), Ao €S", Ua € V.
a=1
Interpretation: U is approximated on
o the stochastic reduced basis {\1, ..., Am} of ST
o the deterministic reduced basis {uy,

.., um}ofy
The questions are then:

none of which is selected a priori
o how to define the (deterministic or stochastic) reduced basis ?
o how to compute the reduced basis and the m-terms PGD of U ?
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POD, KL decomposition

m
U™(x,0) = 3 Ua(X)Xa(6) minimizes E [Hum - U||§2(m]
a=1

The modes u, are the m dominant eigenvectors of the kernel E [U(x, -)U(y, -)]
WO N 0 )ay = Bua(x). sz = 1-
The modes are orthonormal:

Aa(0) = /Q U(X, 0)ua (X)dx

However U(x, 0), so E [u(x, -)u(y, )] is not known!
o Solve the Galerkin problem in V" & SP' <P to construct {u~}, and then solve for
the {Aa € SP}.

o Solve the Galerkin problem in V" @ SP to construct {\« }, and then solve for the
{ta € YV} with dim VH < dim V",
See works by groups of Ghanem and Matthies.
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A(-, -) is symmetric positive definite, so U minimizes the energy functional

JWV) = 1§A(V, V) — B(V)
We define U™ through

TN =

o Equivalent to minimizing a Rayleigh quotient
o Optimality w.r.t the A-norm (change of metric):

IVIZ = Efa(V, V)] = A(V, V)

m
min J Ua A .
{ua} {ra} (; “ ")
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Fori=1,2,3...

J(Aiuj) = mi
VEV,

i—1

n J v+ Ay | =

v,8esP (ﬁ 12:1: / ’)

The optimal couple ()}, u;) solves simultaneously
0 a) deterministic problem

min

A(Niui, Aiv) = B(Ajv) — A (Ui_1 s )\,'V) , Yvevy
o b) stochastic problem

AN, Bu) = B(Bu) = A (U™ pu), VB e S

vev,BesP J (ﬁv + Ui_1)

ui = 'D()\,', Ui_1)

A = S(u;, UT)
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Fori=1,2,3...

JAiu) = mi
vev,

i—1

VD> N | =
vﬁnesPJ<ﬂ /:21 / ’)
The optimal couple (\;, u;) solves simultaneously

min

U1
veV,ﬁest(Bv+ )
o a) deterministic problem

uip = D()‘iy Ui_1)

/IE [/\,gk]Vu,--Vvdx:]E [-/ Nkw U -Vvdx+/)\,-fvdx], wv
Q Q
@ b) stochastic problem

i = S(u;, UT)

E [A,ﬂ/ﬂ kVu,qu,-dx} =E [—ﬁ (/ﬂ kvu~! ~Vu,dx+/ﬂfu,-dx)], V3
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Fori=1,2,3...

i—1
j(AiUI) = vevn,‘/isnesp J (,BV+ ; )\/-u,-> =
The optimal couple (), u;) solves simultaneously

min
@ a) deterministic problem

vev,pesP 7 (BV + U"’1)

u =D, U™T)
/uz [A?k]Vu,.VdezlE [—/ Nk U vVvdx+/>\fdeX], vv
Q Q
o b) stochastic problem

A =S(u, U1
E [A,-,B/ kvu; - Vu,-m(] =E [_/3 (/ kvu=". Vu,-dx+/ fu;dx)] . VB
Q Q Q
o The couple ()}, u;) is a fixed-point of:
)\,'=SO'D()\,', ), Ui=DOS(Ui, )
= arbitrary normalization of one of the two elements.

Algorithms inspired from dominant subspace methods

Power-type, Krylov/Arnoldi, . ..
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@ Set/=1

@ initialize A (e.g. randomly)
@ While not converged, repeat (power iterations)
a) Solve: u = D(), U™)
b) Normalize u
c) Solve: A = S(u, U'™")
@ Setuy=u, N\ =X\

® /<« I+1,if | < mrepeat from step 2
Comments:
o Convergence criteria for the power iterations (subspace with dim > 1 or clustered
eigenvalues)

o Usually few (4 to 5) inner iterations are sufficient

[Nouy, 2007,2008]
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@ Same as Power lterations, but after (uj, \/) is obtained (step 4) update of the
stochastic coefficients:
o Orthonormalyze {uy,...,u} (optional)
o Find {A1,..., N} st
! ! /
A <Z uXi, Uiﬁr) =B (Z Uiﬁr) » VBi=t,..
i=1 i=1 i=1
@ Continue for next couple
Comments:

,,,,, R H
o Improves the convergence

o Low dimensional stochastic linear system (/ x /)

o Cost of update increases linearly with the order / of the reduced representation
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@ Set/=0

@ Initialize X € SP
@ Forl/ =1,2,...
Solve deterministic problem v’ = D(A, U')

/
Orthogonalize: u,y = u' — S 7' (U, u)a
byl 2y < €or i+ I" = mthen break
Normalize uj, s
Solve A = S(uy, U"
@ 1«1+
@ Find {\,..., N} st

| | |
A (Z Ui, Z UiBi) =B <Z UiBi) , VBiz,
p =1 =1

® If I < mreturn to step 2.

©

© 06 0 ©

G@
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Summary

and modified (deflated) rhs

@ Resolution of a sequence of deterministic elliptic problems, with elliptic coefficients E [Azk]

@ Resolution of a sequence of linear stochastic equations

dimension is dim 1"
@ Update problems: system of linear equations for stochastic random variables

dimension is dim S*
@ To be compared with the Galerkin problem dimension

dimension is m x dim S”

dim V" x dim S*
Weak modification of existing (FE/FV) codes
(weakly intrusive)
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An example

Test case definvition : 25 x 0.695 km

ariation linesire de hd ah3

A Head (m) | Expectation Range | distribution
Ahy 2 +51 +10 Uniform
Ahy 3 +21 +5 Uniform
Ahy g -3 +2 Uniform
Ahy 5 -110 +10 Uniform
Ahg 4 -160 +20 Uniform
Uncertain conductivities

Layer ki median ki min k; max distribution

Dogger 25 5 125 LogUniform

Clay 3106 310~7 31075 | LogUniform

Limestone 6 1.2 30 LogUniform

Marl 310°° 11075  110~* | LogUniform

Parameterization

© 9independentry. {&,...,&} ~ U[0,1]°
0 dimS” =P +1 = (9 + No)!/(9'No!)

@ N, =~ 30, 000 finite elements

o dim(V") ~ 15,000

[}

Dimension of Galerkin problem: 8.2 10° (No = 2),
3.310% (No = 3)
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Galerkin residual (left) and error (right) norms as a function of m (No = 3)

T T
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Power-Update —&—
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Residual

0.01

1e-04
1e-06

1le-08

le-10

le-12

T
Power
Power-Update
Arnoldi-P-Update
Arnoldi-F-Update

Full-Galerkin ——
1 1 1
10000 20000 30000
CPU time (s)

40000

Residual

0.1
0.01
0.001
le-04
1le-05
1le-06
1le-07
le-08

le-09
0

T T T T

Power —5—
Power-Update —=—

Arnoldi-P-Update —e—

Arnoldi-F-Update —e— 5

500

1000 1500 2000 2500 3000 3500
CPU time (s)




So far, deterministic / stochastic separation:

Um(xyg): Um(x:£1»--~7£N):Zu"(x))‘f(éh :gN):
where A\r(€) € S.

r=1

Does not address high-dimensionality issue whenever N is large.

However, if the &; are independent, S has a tensor product structure,

S§=8® --Q8k,
we can think of a decomposition of the form

UT(x,8) = S ur(0AL(€) - AN (en),

r=1
where now AL(¢) € S;.

G@
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Extension of the previous algorithms for the computation of

UT(x,€) = > ur()A (&) - AN (En),

r=1
is straightforward:

o same deterministic problems

o stochastic and update problems for the (separated) A, are substituted with

alternated direction resolutions: iterations over sequence of one-dimensional
problems.

For instance, stochastic problem(s) in direction i: find A € S; such that

]E[(Al...A...)\',‘]) (,\}...ﬁ...,\ﬁ’)/nkVu,~Vu,dx]
:E[_ (,\}...ﬁ...,\l,‘) (/ﬂkVU"1 -Vu,dx+/9fu,dx)}, VB € ;.
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Clearly, using

Um(x,¢) = z’": ur()AL (&) - AN (&),
r=1
we trade convergence with complexity reduction
This can be mitigated using using a R, -rank approximation of the stochastic
coefficients:
U™(x,¢) = Z ur(x) (Z Al

. Alr\{r/ (gN) 3
r'=1
with a greedy-type approximation of low rank approximation of A,
o Extension of the algorithms is immediate

@ R, can be made rank dependent
o Efficient i

Efficient implementation requires separated representation of the operator.
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o Independent random conductivities over 7 sub-domains, with same distribution
(log-normal): N =7
[+] S,‘=177 = |-|10(R), sodimS = 117

L
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

0.5

-0.5

o =~ N w s oo

Res?

0.1

0.0001

16-05
1

Dimension of Stochastic Space 117,
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Consider the deterministic wave equation,

—w?pu(x) — V- (RVu(x)) = f(x),
ux € oQ)=0

o w is the frequency
o p the density

o & = k(1 — iBw) € C the wave velocity with x, 3 > 0
Let Lo(2) = L2(£2, C) with inner product and norm

(U, V) = Re ( / u*(x)v(x)dﬂ), Ul gy = (U W,

The weak formulation: Find u € H(} (2, C) such that

a(u,v) —b(v) =0 Vv e H(Q),
with the bilinear and linear forms

wz/u*VdQ+/RVu*~Vde], b(v) = Re [/ f*vdsz].
Q Q Q
] = =

PAN &4
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Take now w, p and « as second order random variable defined on a probability space
P= (@7 :@a N)

We extend L»(Q) and H] (Q) to L»(2, ©) and H] (£, ©) by tensorization, and we
assume

U(x,0) € L2(2,0) < E[(U(-), U(-))a] < occ.
Variational form of the stochastic wave equation
Find U € H}(Q, ©) such that
AU, V) - B(V) =0, YV e HI(Q,0),

where

AU, V) =E [Re [—w2(0) /Q U*(0)V(©)dQ + /Q K(6)V U (6) - VV(6) dQ”,

and

B(V):]E[Re [/Qf*V(e)dQH.
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r=oo

We seek for U € H}(Q,0) = H}(Q) ® L2(©) has the separated form

U(x,0) = > ur(X)Ar(0), ur € HJ(RQ), Ar € La(©),
r=0

following the PGD approach based on the deterministic and stochastic problems
ur = DR~ AR) . A(UTT" + upAg, vAR) — B(vAR) = 0¥V € Hy ()
M =S ur): AU + upAg, urB) — B(urB) = 0,¥B € Ly(©)
and update problem:
given u,_q

R compute A,—q, . g such that

.....

Deter. problem

Stoch. problem
R
A (Z Urhr, u,/ﬁ> — B(usB)=0, VB€Ly(®)andr' =1,...,R
r=0

PAN &4



Assume rank-R approximation has been obtained.
@ Initialization: set A € L(©),/=0
@ Arnoldi subspace generation:
o Setw = D(UR, X)
Forr=1,...,R+ 1w+ (w,u)q
Ifh=(w,w)q < e break
Set/ « I+ 1,ugyy = w/h
Set A = S(UR, upy)
o Repeat for next Arnoldi vector

@ Update solution: set R + R + / and solve

© 0600

R
A (Z Ur)\r,U,/ﬁ> — B(U,J,B) =0, VBe Lz(@) and r' = 1,...,R.
r=0

@ Check residual to restart at step 1 or stop

Advantage: limited number of deterministic problem solves to generate the
deterministic basis.
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(Damped) Wave equation

We introduce a finite set of N independnt real-valued r.v. £ = (&; ... &x) with

uniform distribution on = = 1. The random frequency, density and stiffness are
parametrized using &,

(w, 5, p)(0) — (w, 5, p)(£()),
and U is sought in the image probability space:

R
H3 (2,2) 3 U(x, £(0)) = Y ur(x)Ar(£(0))-
r=1

o U(x, ) is expected to be smooth a.s.: need for a limited number of spatial modes
to span the stochastic solution space,

o U(-, &) can exhibit steep and complex dependences with respect to the input
parameters.

The complexity of the mapping & € = — U(-, &) € H(‘) () reflects in the stochastic
coefficients Ar(&€) and calls for appropriate discretization at the stochastic level.

it
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(Damped) Wave equation

Presently, we use piecewise polynomial approximations at the stochastic level:
partitions

o = is adaptively decomposed into sub-domains through a sequence a dyadic (1d)

o A tree structure is used to manage the resulting stochastic space
o Multi-resolution analysis is used to control the local adaptation (anisotropic
refinement of the partition of =)
o Stochastic and update problems are solved independently over the sub-domains
(efficient parallelization)
(see [Tryoen, LM and Ern, SISC 2012])
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(Damped) Wave equation

Given the approximation U" and a stochastic space S”
@ Arnoldi iterations to generate orthonormal U, 1, ... Ur, Using A € S”
@ setr«r+1

@ While not satisfying accuracy criterion, repeat

o Solve the update problem for {\¢,..., A/} inS"
o Enrich adaptively S”

@ Compute residual norm
@ If not converge restart at step 1.
Observe:

o Same approximation space for all stochastic coefficients (ease implementation
and favor parallelization)

o Continuous enrichment, no coarsening

o Successive Arnoldi spaces generated using an coarse stochastic space! (in fact
robust)

o Accuracy requirement should balance stochastic discretization and reduced
space errors.

@P 0 X ‘ o« = DA




(Damped) Wave equation

o log(k) ~ U[—4: -2]

0w~ U0.5,1]

o p=1and g =0.05
o Third order (Legendre) expansion.

r=13

logiv) logiv)




(Damped) Wave equation

r=1

r=5

r=15 r=25

Selected Arnoldi modes: real part (top) and imaginary part (bottom)
r=3
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Consider the steady, incompressible Navier-Stokes equations

U6)VU(8) = =V P(0) + 1(0)VZU(9) + (6) inQ,
v-U@) =0 in Q,
uew)=o0 on 99Q.
In view of PGD of the solution, we need to consider (mainly)

in a bounded (2d) domain Q.
@ non-linear character (increases when v | 0)

@ enforcement of the divergence free constraint

@ stabilization (upwinding) due to the convective term
None of these will be really address here, simply numerical experiments!
[Tamellini, LM, Nouy,

SISC, 2014]
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Deterministic space V = Hj ; (Q).

Weak formulation: Find U € X = V ® S such that

E [ /Q [(UO)V U(9)) - V() + v(0)V U(0) V V() — F(6) - V(0)] dx] YV ex

The deterministic problem u = D(\, U™) writes: Vv € V

/ (& [°]uvu+ uvan() + n(\)Vu) - v + /Q]E [32] vuwvax

=/]E [MF —UTvU™)] ~vdx—/]E [V AV U] Vvdx.
Q Q
where Tn(X) = E [X\2U™).

Stochastic problem A = S(u, U™) writes: V3 € S

E [)\2[3] /ﬂ(uVu~ u)dx +E [AB/Q(UVU’" +U"vu) - udx} + /QJE[uAﬁ]VuVudx

=E [B/Q(F— umvumy - udx] —E [ﬁ/ﬂuVU'"Vudx]
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o Resolution of a sequence of deterministic problems, NS + Lin. term and deflated
rhs

dimension is dim V"
o Resolution of a sequence of quadratic stochastic equations
dimension is dim S

o Update problems: system of quadratique equations for stochastic random
variables

dimension is m x dimS
o To be compared with the Galerkin problem dimension
dimVh x dim S
Weak modification of existing (FE/FV) codes
(weakly intrusive)
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Stochastic discretization:

@ Parametrization of v(0) and F(0) using N i.i.d. random variables

E={&, ...
@ Wiener-Hermite polynomials for the basis for S

JEx} ~ N(O, P).

AB) =D AaVal£(9)),

@ Truncature to (total) polynomial degree No:

1
dim s — (No+N)!

No!N!
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Example

Case of a deterministic forcing and a random (Log-normal) viscosity:

por

00025 0005 00075 001

v(0) = 2;—0 exp (% ;mm) (+107%), & ~ N(0,1) i.i.d.

Same problem but for parametrization involving N Gaussian R.V.
Galerkin solution for N = 1 and No = 10 (Wiener-Hermite expansion)

Mean and standard deviation of U® rotational.

orNwa
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Example
First PGD-Arnoldi modes for N = 1 and No = 10

B

-
COLE 7
OLYTECHNIQUH 777 N

G DX




Example

Convergence of PGD solution N = 1 and No = 10
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Example
First PGD-Arnoldi modes
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Results at 7 = 1/50: No =3, N = 11, P = 364

10°

10"

Residual ——

40 50

10°

10!

Error —A—

Redu

Galerkin —
iced m=:

50

Residual (left), ||[U™ — UC|| (center) and norm of POD modes for m = 45 (right).
Essentially < 50 Navier-Stokes solves!
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Example

o computation of the residual in Hg ain()
o need to reconstruct the pressure

o 2 alternatives: apply PGD to the pressure unknown, given the reduced velocity
approximation, or recycle the pressure fields associated to the enforcement of the
divergence-free constraint during the Arnoldi process as a reduced pressure

basis.
10° 10° 10°
—e—error —e—error —e—error
—e LM-residual —e—LM-residual ——LM-residual
—+-PGD-residual —+-PGD-residual e PGD-residual
107 —-Anorm 107  [=>-Anom 107 > A
107 107 107
107} 107 10°
. |
1 bL 1
O 5 o 15 20 25 30 o 10 20 30 40 50 00 10 20 30 40 50

Comparison of different error measures of the PGD solution at 7 = 1/10, 1/50 and
1/100 (from left to right).
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Questions & Discussion

«40O0>» «Fr» «=)» «
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