Galerkin and Reduced Basis methods for UQ

Olivier Le Maître ${ }^{1}$
（with Omar Knio KAUST）

${ }^{1}$ Centre de Mathématiques Appliquées，CNRS Ecole Polytechnique，Palaiseau，France https：／／perso．limsi．fr／olm／ olivier．le－maitre＠polytechnique．edu
$\sqrt{2}$
ÉCOLE
POLYTECHNIQUE

Ecole d＇été de Mécanique Théorique，Quiberon

Objectives of the lecture

- Basic principle of stochastic Galerkin projection
- Discuss derivation and elementary building blocks of the Galerkin projection
- Galerkin linear models and evaluation of non-linearities
- PGD and reduced basis methods.

Galerkin projection

- Weak solution of the stochastic problem $\mathcal{M}(U(\xi) ; D(\xi))=0$
- Needs adaptation of deterministic codes
- Potentially more efficient than NI techniques.
- Better suited to improvement (error estimate, optimal and basis reduction, ...), thanks to functional analysis.

Stochastic discretization
Let $\mathcal{S}^{\mathrm{P}} \subset L^{2}\left(\equiv, p_{\xi}\right)$ defined as

$$
\mathcal{S}^{\mathrm{P}}=\operatorname{span}\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}
$$

where the $\left\{\Psi_{k}\right\}$ are orthogonal functionals in $\boldsymbol{\xi}$, e.g. a PC basis truncated to an order No.
\mathcal{S}^{P} is called the stochastic approximation space
We seek for the approximate stochastic model solution in $\mathcal{V} \otimes \mathcal{S}^{\mathrm{P}}$.

$$
U(\xi) \approx U^{\mathrm{P}}(\xi)=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)
$$

Inserting U^{P} in the weak formulation yields the stochastic residual

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})\right), \beta(\boldsymbol{\xi})\right\rangle=\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle .
$$

Galerkin projection

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})\right), \beta(\boldsymbol{\xi})\right\rangle=\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle
$$

In general, one cannot find $U^{\mathrm{P}} \in \mathcal{V} \otimes \mathcal{S}^{\mathrm{P}}$ such that

$$
\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle=0 \quad \forall \beta \in L^{2}\left(\equiv, p_{\boldsymbol{\xi}}\right) .
$$

It is then required that $R\left(U^{\mathrm{P}}\right)$ is orthogonal to the stochastic approximation space:

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})\right), \beta(\boldsymbol{\xi})\right\rangle=0 \quad \forall \beta \in \mathcal{S}^{\mathrm{P}}
$$

- This weak formulation corresponds to the stochastic Galerkin formulation.
- The actual formulation is obtained in practice by projecting all model equations on \mathcal{S}^{P} (see examples later).

ECOLE
POITTECHNIQu:

The Galerkin projection results in a set of $\mathrm{P}+1$ coupled problems for the stochastic modes u_{k} of the solution.

Find $\left\{u_{k}, k=0, \ldots, \mathrm{P}+1\right\} \in \mathcal{V}^{\mathrm{P}+1}$ such that

$$
\left\langle\mathcal{M}\left(\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi) ; D(\xi)\right), \Psi_{l}(\xi)\right\rangle=0, \quad I=0, \ldots, \mathrm{P} .
$$

- The size of the Galerkin problem increases with P.
- Recall that $\mathrm{P}=1=(\mathrm{N}+\mathrm{No})!/ \mathrm{N}!\mathrm{No}$! for polynomial truncation at order No.
- This can be very costly for complex problems requiring large parametrization and large expansion order.
- Projections on the Ψ_{l} of the model equations can be problematic in presence of non-linearities.

ECOLE
POITIECHNIQu:

The Galerkin projection for the elliptic problem:
Find $U(\boldsymbol{x}, \boldsymbol{\xi}) \in H_{0}^{1} \otimes L^{2}\left(\equiv, P_{\equiv}\right)$ such that

$$
A(U, V ; D)=B(V) \quad \forall V(\boldsymbol{x}, \boldsymbol{\xi}) \in H_{0}^{1} \otimes L^{2}\left(\equiv, P_{\equiv}\right)
$$

where

$$
A(U, V ; D)=\mathbb{E}\left[\int_{\Omega} \nu(\boldsymbol{x}, \boldsymbol{\xi}) \nabla U(\boldsymbol{x}, \boldsymbol{\xi}) \cdot \nabla V(\boldsymbol{x}, \boldsymbol{\xi}) d \boldsymbol{x}\right], \quad B(V)=\mathbb{E}\left[\int_{\Omega} F(\boldsymbol{x}, \boldsymbol{\xi}) V(\boldsymbol{x}, \boldsymbol{\xi}) d \boldsymbol{x}\right] .
$$

Introducing the PC expansion of U, it comes the coupled set of deterministic problems:
Find $\left\{u_{k}\right\}_{k=0, \ldots, \mathrm{P}} \in\left(H_{0}^{1}\right)^{\mathrm{P}+1}$ such that

$$
\sum_{l=0}^{\mathrm{P}} a_{k l}\left(u_{l}, v\right)=b_{k}(v) \quad \forall v \in H_{0}^{1}, k=0, \ldots, \mathrm{P},
$$

where

$$
a_{k l}(u, v)=\int_{\Omega} \mathbb{E}\left[\nu(\boldsymbol{x}, \boldsymbol{\xi}) \Psi_{k}(\boldsymbol{\xi}) \Psi_{l}(\boldsymbol{\xi})\right] \nabla u \cdot \nabla v d \boldsymbol{x}, \quad b_{k}(v)=\int_{\Omega} \mathbb{E}\left[f(\boldsymbol{x}, \boldsymbol{\xi}) \Psi_{k}(\boldsymbol{\xi})\right] v(\boldsymbol{x}) d \boldsymbol{x}
$$

Galerkin projection of discrete deterministic problems
The previous development can be applied to models discretized at the deterministic level.
Seeking for for $\boldsymbol{U}(\boldsymbol{\xi}) \approx \boldsymbol{U}^{\mathrm{P}} \in \mathbb{R}^{m} \otimes \mathcal{S}^{\mathrm{P}}$, we obtain Find $\left\{\boldsymbol{u}_{k}, k=0, \ldots, \mathrm{P}+1\right\} \in\left(\mathbb{R}^{m}\right)^{\mathrm{P}+1}$ such that

$$
\left\langle\mathcal{M}_{h}\left(\sum_{k=0}^{\mathrm{P}} \boldsymbol{u}_{k} \Psi_{k}(\xi) ; D(\xi)\right), \Psi_{l}(\xi)\right\rangle=0, \quad I=0, \ldots, \mathrm{P}
$$

For many models, apply the stochastic discretization before the deterministic discretization results in the same Galerkin problem as proceeding the reverse way, provided that \mathcal{V}^{h} is independent of ξ. Exceptions include, e.g.,

- Lagrangian formulations (oгm \& ок, ЈСР 2009],
- treatment of geometric uncertainties.
- The linear Galerkin problem couples all the stochastic modes $\boldsymbol{u}_{i} \in \mathbb{R}^{m}$ of the stochastic solution.
- It is not possible in general to compute independently the components \boldsymbol{u}_{i}.
- The size of the spectral problem is large: $m \times \operatorname{dim} \mathcal{S}^{\mathrm{P}}=m \times(\mathrm{P}+1)$.
- Resolution of the linear Galerkin system can be demanding.
- An understanding of the block structured system is instructive to design and apply well-suited numerical methods.

Linear Models

Structure of Galerkin problems for uncertain linear operators

$$
\mathrm{N}=4-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=35-S=0.58 \quad \mathrm{~N}=6-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=84-S=0.41
$$

$$
\mathrm{N}=8-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=165-S=0.31 \quad \mathrm{~N}=10-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=286-S=0.23
$$

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No $=3$. Matrix blocks $[\bar{A}]_{i j}$ that are generally non-zero appear as black squares.

Linear Models

Structure of Galerkin problems for uncertain linear operators

$$
\text { No }=2-\operatorname{dim} \mathcal{S}^{P}=21-S=0.52 \quad \text { No }=3-\operatorname{dim} \mathcal{S}^{P}=56-S=0.49
$$

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with $\mathrm{N}=5$. Matrix blocks $[\bar{A}]_{i j}$ that are generally non-zero appear as black squares.

- Examples above assumes that $[A](\xi)$ has a full spectrum in \mathcal{S}^{P}.
- When $[A](\xi)$ has a first-order expansion, the block structure of the linear spectral problem becomes even sparser.
- This behavior motivates the selection, whenever possible, of an approximation based on a first order operator.

Linear Models

Structure of Galerkin problems for uncertain linear operators

$$
\text { No }=2-\operatorname{dim} \mathcal{S}^{P}=21-S=0.184 \quad \text { No }=3-\operatorname{dim} \mathcal{S}^{P}=56-S=0.084
$$

Case of a linear stochastic operator $[A](\xi)$ having a first-order expansion.

- The main difficulty in solving discrete linear spectral problems is the size of the system.
- The structure and sparsity of the linear Galerkin problem suggests iterative solution strategies.
- Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and Krylov subspace methods) can be used.
- The efficiency of iterative solvers depends on the availability of appropriate preconditioners which need be adapted to the Galerkin problem.
- Construction of the preconditioners to exploit the block-structure of the linear Galerkin problem.

Cirs \times togiticunoul
Crizía

$\rightarrow 4$三 $01=$ —

Many models involve non-linearities of various types and their treatment is critical in stochastic Galerkin methods

Let $\left\{\Psi_{k}(\xi)\right\}_{k=0}^{\mathrm{P}}$ be an orthogonal basis of $\mathcal{S}^{\mathrm{P}} \subset L_{2}\left(\equiv, P_{\equiv}\right)$, and f a non-linear functional u, v, \ldots :

$$
u, v, \cdots \in \mathbb{R} \mapsto f(u, v, \ldots) \in \mathbb{R}
$$

For random arguments, $U(\boldsymbol{\xi}), V(\boldsymbol{\xi}), \cdots \in \mathbb{R} \otimes \mathcal{S}^{P}$, we generally have $f(U, V, \ldots)=: G(\xi) \notin \mathbb{R} \otimes \mathcal{S}^{\mathrm{P}}$, but if $G(\xi) \in \mathbb{R} \otimes L_{2}\left(\equiv, P_{\equiv}\right)$ it has an orthogonal projection on \mathcal{S}^{P},

$$
G(\xi) \approx \widehat{G}=\sum_{k=0}^{\mathrm{P}} g_{k} \Psi_{k}, \quad g_{k}=\frac{\left\langle f(U, V, \ldots), \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle} .
$$

The problem is therefore to derive efficient strategies to compute the expansion coefficients g_{k} of $\hat{G}(\xi)$ from the expansion coefficients of its arguments $U(\xi), V(\xi), \ldots$

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

The product of two quantities appears in many models.
It corresponds to the case $G(\boldsymbol{\xi})=W(\boldsymbol{\xi})=U(\xi) V(\boldsymbol{\xi})$ for $U, V \in \mathcal{S}^{\mathrm{P}}$ having known expansions. Clearly,

$$
W(\boldsymbol{\xi})=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} u_{i} v_{j} \Psi_{i}(\boldsymbol{\xi}) \Psi_{j}(\boldsymbol{\xi}) .
$$

and in general $W(\xi) \notin \mathcal{S}^{\mathrm{P}}$ though it is in $L_{2}\left(\equiv, P_{\equiv}\right)$. Therefore, \widehat{W}, the orthogonal projection of W on \mathcal{S}^{P}, has expansion coefficients

$$
w_{k}=\frac{\left\langle W, \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle}=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} u_{i} v_{j} C_{i j k} .
$$

The result of the orthogonal projection of $U V$ is called the Galerkin product of U and V and is denoted $U * V$.
The Galerkin product introduces truncation errors by disregarding the components of UV orthogonal to $\mathcal{S}^{\text {P }}$.

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

Higher order polynomial non-linearities are also frequent.
Consider first the triple product $G(\boldsymbol{\xi})=U(\xi) V(\boldsymbol{\xi}) W(\boldsymbol{\xi})$ One can again perform an exact Galerkin projection of the triple product:

$$
\begin{array}{r}
\widehat{U V W}:=\sum_{m=0}^{\mathrm{P}} \widehat{u V W}_{m} \Psi_{m}=\sum_{m=0}^{\mathrm{P}} \Psi_{m}\left(\sum_{j, k, l=0}^{\mathrm{P}} T_{j k l m} u_{j} v_{k} w_{l}\right) \\
T_{j k l m} \equiv \frac{\left\langle\Psi_{j} \Psi_{k} \Psi_{l} \Psi_{m}\right\rangle}{\left\langle\Psi_{m} \Psi_{m}\right\rangle} .
\end{array}
$$

- This exact Galerkin projection of the triple product involves the fourth order tensor $T_{j k l m}$.
- $T_{j k l m}$ is sparse with many symmetries .
- However, computation and storage of $T_{j k l m}$ becomes quickly prohibitive when P increases.
- The exact Galerkin projection can hardly be extended further to higher order polynomial non-linearities.

ECOLE
POIVTECHNIQUE

Crzéa

Galerkin Approximation of Non-Linearities

Polynomial non-linearities

It is often preferred to rely on approximations for polynomial non-linearities of order larger than 2. For the triple product, an immediate approximation is

$$
\widehat{U V W} \approx U *(V * W)=\widehat{U \widehat{V W}} .
$$

This strategy can be extended to higher degree polynomial non-linearities by using successive Galerkin products. For instance,

$$
\widehat{A B C \ldots D} \approx A *(B *(C *(\ldots * D)))
$$

This procedure does not provide the exact Galerkin projection, since every intermediate product disregards the part orthogonal to \mathcal{S}^{P}. Even for the triple product it is remarked that, in general

$$
U *(V * W) \neq(U * V) * W \neq(U * W) * V
$$

The order in which the successive Galerkin products are applied affects the result.

Galerkin Approximation of Non-Linearities

Inverse and square root

Inverse and division are also common non-linearities.
For the inversion, one has to determine the expansion coefficients of the inverse U^{-1} of $U(\xi)$,

$$
U^{-1}(\xi)=\frac{1}{U(\xi)}=\left(\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)\right)^{-1}
$$

such that

$$
U^{-1}(\xi) U(\xi)=1 \quad \text { a.s. }
$$

U^{-1} is sought in \mathcal{S}^{P} and the previous equation needs to be interpreted in a weak sense. Using the Galerkin multiplication tensor, it comes

$$
\left(\begin{array}{ccc}
\sum_{j=0}^{\mathrm{P}} C_{j 00} u_{j} & \ldots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PO} 0} u_{j} \\
\vdots & \ddots & \vdots \\
\sum_{j=0}^{\mathrm{P}} C_{j 0 \mathrm{P}} u_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP}} u_{j}
\end{array}\right)\left(\begin{array}{c}
u_{0}^{-1} \\
\vdots \\
u_{\mathrm{P}}^{-1}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
0
\end{array}\right) .
$$

Due to truncature error, the above definition corresponds to the pseudo-spectral inverse U^{*-1} of U.

Galerkin Approximation of Non-Linearities

Inverse and square root

Pseudo-spectral approximation at different orders of the inverse $Y(\xi)=\widehat{U^{-1}}(\xi)$ of $U(\xi)=1+\alpha \xi$ with $\xi \sim \mathrm{N}(0,1): \alpha=1 / 5$ (left), $1 / 4$ (center) and $1 / 3$ (right). Wiener-Hermite expansions are used.

Extend immediately to the evaluation of U / V

Galerkin Approximation of Non-Linearities

Inverse and square root

The Galerkin product can also serve to approximate square roots.
Given $U(\xi)>0$ we have

$$
U^{1 / 2}(\xi) U^{1 / 2}(\xi)=U(\xi)
$$

The approximate $U^{* 1 / 2} \in \mathcal{S}^{\mathrm{P}}$ of $U^{1 / 2}$ solves

$$
\left(\begin{array}{ccc}
\sum_{j=0}^{\mathrm{P}} C_{j 00} u^{1 / 2}{ }_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP} 0} u^{1 / 2}{ }_{j} \\
\vdots & \ddots & \vdots \\
\sum_{j=0}^{\mathrm{P}} C_{j 0 \mathrm{P}} u^{1 / 2}{ }_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP}} u^{1 / 2}{ }_{j}
\end{array}\right)\left(\begin{array}{c}
u^{1 / 2}{ }_{0} \\
\vdots \\
u^{1 / 2}{ }_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
u_{0} \\
\vdots \\
u_{\mathrm{P}}
\end{array}\right) .
$$

This non-linear system can be solved using standard techniques (Newton-Raphson iterations) Choosing for the initial guess $U^{* 1 / 2}(\xi)= \pm \sqrt{U_{0}}$ allows for the selection of the positive or negative square root of $U(\xi)$.

ECOLE
Poovtit

poottechniaus

Galerkin Approximation of Non-Linearities

Absolute values

Application to the approximation of absolute values
$U(\xi)=\xi \quad U(\xi)=1+\xi / 2$

Convergence with No of the pseudo-spectral approximation on $\mathcal{S}^{\text {No }}$ of $Y(\xi)=|U(\xi)|$ for different $u(\xi)$. Top plots: $\xi \sim \mathrm{N}(0,1)$ and Wiener-Hermite expansions. Bottom plots: $\xi \sim \mathcal{U}(-1,1)$ and Wiener-Legendre expansions.

Galerkin Approximation of Non-Linearities

Other non-linearities

For sufficiently differentiable non-linearities one can rely on Taylor series

$$
f(u)=f(\hat{u})+(u-\hat{u}) f^{\prime}(\hat{u})+\frac{(u-\hat{u})^{2}}{2} f^{\prime \prime}(\hat{u})+\cdots
$$

In the stochastic case, it is common to expand the series about the mean u_{0} of U, at which $f^{\prime}\left(u_{0}\right), f^{\prime \prime}\left(u_{0}\right), \cdots$ can be evaluated.
Successive powers of $\delta U:=U-U_{0}$ can be evaluated in a pseudo-spectral fashion

$$
\mathcal{S} \ni F(U) \approx f\left(u_{0}\right)+\delta U f^{\prime}\left(u_{0}\right)+\frac{\delta U * \delta U}{2} f^{\prime \prime}\left(u_{0}\right)+\frac{\delta U * \delta U * \delta U}{6} f^{\prime \prime \prime}\left(u_{0}\right)+\cdots
$$

- Convergence of the approximation needs be carefully analyzed.
- Impact of the pseudo spectral error is critical.
- Radius of convergence often unknown.

ECOLE
POIYTECHNIQU:
Anzéa

Galerkin Approximation of Non-Linearities

Other non-linearities

Integration approach for differentiable non-linearities
If $f(\cdot)$ is analytical with derivative $f^{\prime}(\cdot), f$ can be defined as some integral of f^{\prime} along a deterministic integration path.
Let $Y(s, \boldsymbol{\xi})$ be a stochastic processes of $L^{2}\left(\equiv, P_{\equiv}\right)$, and consider $G(s, \boldsymbol{\xi}):=f(Y)$:

$$
Y=Y(s, \boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} y_{k}(s) \Psi_{k}(\boldsymbol{\xi}), \quad G=G(s, \boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} g_{k}(s) \Psi_{k}(\boldsymbol{\xi})
$$

Therefore, we have

$$
\begin{aligned}
\int_{s_{1}}^{s_{2}} \frac{\partial G}{\partial s} \mathrm{~d} s & =\int_{s_{1}}^{s_{2}} G^{\prime} \frac{\partial Y}{\partial s} \mathrm{~d} s \\
\sum_{k=0}^{\mathrm{P}} \Psi_{k} \int_{s_{1}}^{s_{2}} \frac{\mathrm{~d} g_{k}}{\mathrm{~d} s} \mathrm{~d} s & =\sum_{k=0}^{\mathrm{P}} \Psi_{k}\left[g_{k}\left(s_{2}\right)-g_{k}\left(s_{1}\right)\right] \\
& =\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} \Psi_{i} \Psi_{j} \int_{s_{1}}^{s_{2}} g_{i}^{\prime}(s) \frac{\mathrm{d} y_{j}}{\mathrm{~d} s} \mathrm{~d} s .
\end{aligned}
$$

Galerkin Approximation of Non-Linearities

Other non-linearities

The integration path is set such that for all $k=0, \ldots, \mathrm{P}$

$$
\begin{equation*}
Y\left(s_{1}, \boldsymbol{\xi}\right)=\hat{U}, \quad Y\left(s_{2}, \boldsymbol{\xi}\right)=U \tag{1}
\end{equation*}
$$

we obtain

$$
F(U(\xi))_{k}=F(\hat{U})_{k}+\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} C_{i j k} \int_{\hat{u}_{j}}^{u_{j}} f_{i}^{\prime} \mathrm{d} y_{j}, \quad \forall k=0, \ldots, \mathrm{P} .
$$

Provided that

- the PC expansion of $F(\hat{U})$ is known,
- the PC expansion of $F^{\prime}(\cdot)$ is easily computed along the integration path, the computation of $F(U)$ amounts to solve a set of coupled ODEs.

Galerkin Approximation of Non-Linearities

Other non-linearities

Example: exponential $f(u)=\exp (u)$.
We simply set $Y(s, \xi)=s U(\xi), s_{1}=0$ and $s_{2}=1$.
Since $\exp (u)^{\prime}=u$, we obtain the the set of coupled ODEs:

$$
\frac{\mathrm{d} g_{k}}{\mathrm{~d} s}=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} c_{i j k} u_{i} g_{k}, \quad k=0, \ldots, \mathrm{P},
$$

to be integrated up to $s=1$ from the initial condition

$$
g_{k}(s=0)=\left\langle\exp 0, \Psi_{k}\right\rangle=\delta_{k, 0} \quad k=0, \ldots, \mathrm{P} .
$$

- Standard techniques for ODEs can be used.
- Integration and stochastic truncation error control is critical.

Galerkin Approximation of Non-Linearities

Other non-linearities

Non-intrusive projections

- For general non-linearities $F(U, V, \ldots)$ it is possible to proceed by non-intrusive projection techniques:

$$
\begin{equation*}
f_{k}:=\frac{\left\langle F(U, V, \ldots), \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle} \tag{2}
\end{equation*}
$$

- Results in hybrid Galerkin / non-intrusive approaches when used in intermediate step of a Galerkin projection method (case of complex non-linear model).

$$
\begin{equation*}
\nabla \cdot(\nu(U) \nabla U)=g \text { with BCs. } \tag{3}
\end{equation*}
$$

- Interest can be questionable.

Table of content

（1）Galerkin Method
－Stochastic Galerkin projection

2）Galerkin Projection of Linear／Non－linear Models
－Linear Models
－Galerkin Approximation of Non－Linearities
（3）Proper Generalized Decomposition
－Definition
－Algorithms
－An example
－Hierarchical Decomposition
－（Damped）Wave equation
－PGD for the Stochastic NS eq．
－Example

Definition

Separated representation

The rank- m PGD approximation of U is

$$
U(\boldsymbol{x}, \theta) \approx U^{m}(\boldsymbol{x}, \theta)=\sum_{\alpha=1}^{m<\mathrm{P}} u_{\alpha}(\boldsymbol{x}) \lambda_{\alpha}(\theta), \quad \lambda_{\alpha} \in \mathcal{S}^{\mathrm{P}}, u_{\alpha} \in \mathcal{V} .
$$

Interpretation: U is approximated on

- the stochastic reduced basis $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ of \mathcal{S}^{P}
- the deterministic reduced basis $\left\{u_{1}, \ldots, u_{m}\right\}$ of \mathcal{V} none of which is selected a priori
The questions are then:
- how to define the (deterministic or stochastic) reduced basis ?
- how to compute the reduced basis and the m-terms PGD of U ?

Definition

Optimal L_{2}-spectral decomposition

POD, KL decomposition

$$
U^{m}(\boldsymbol{x}, \theta)=\sum_{\alpha=1}^{m} u_{\alpha}(\boldsymbol{x}) \lambda_{\alpha}(\theta) \text { minimizes } \mathbb{E}\left[\left\|U^{m}-U\right\|_{\mathrm{L}^{2}(\Omega)}^{2}\right]
$$

The modes u_{α} are the m dominant eigenvectors of the kernel $\mathbb{E}[U(\boldsymbol{x}, \cdot) U(\boldsymbol{y}, \cdot)]$:

$$
\int_{\Omega} \mathbb{E}[U(\boldsymbol{x}, \cdot) U(\boldsymbol{y}, \cdot)] u_{\alpha}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}=\beta u_{\alpha}(\boldsymbol{x}), \quad\left\|u_{\alpha}\right\|_{\mathrm{L}^{2}(\Omega)}=1 .
$$

The modes are orthonormal:

$$
\lambda_{\alpha}(\theta)=\int_{\Omega} U(\boldsymbol{x}, \theta) u_{\alpha}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

However $U(\boldsymbol{x}, \theta)$, so $\mathbb{E}[u(\boldsymbol{x}, \cdot) u(\boldsymbol{y}, \cdot)]$ is not known!

- Solve the Galerkin problem in $\mathcal{V}^{h} \otimes \mathcal{S}^{\mathrm{P}^{\prime}<\mathrm{P}}$ to construct $\left\{u_{\alpha}\right\}$, and then solve for the $\left\{\lambda_{\alpha} \in \mathcal{S}^{\mathrm{P}}\right\}$.
- Solve the Galerkin problem in $\mathcal{V}^{H} \otimes \mathcal{S}^{\mathrm{P}}$ to construct $\left\{\lambda_{\alpha}\right\}$, and then solve for the $\left\{u_{\alpha} \in \mathcal{V}^{h}\right\}$ with $\operatorname{dim} \mathcal{V}^{H} \ll \operatorname{dim} \mathcal{V}^{h}$.

See works by groups of Ghanem and Matthies.

Definition

Alternative definition of optimality

$A(\cdot, \cdot)$ is symmetric positive definite, so U minimizes the energy functional

$$
\mathcal{J}(V) \equiv \frac{1}{2} A(V, V)-B(V)
$$

We define U^{m} through

$$
\mathcal{J}\left(U^{m}\right)=\min _{\left\{u_{\alpha}\right\},\left\{\lambda_{\alpha}\right\}} \mathcal{J}\left(\sum_{\alpha=1}^{m} u_{\alpha} \lambda_{\alpha}\right) .
$$

- Equivalent to minimizing a Rayleigh quotient
- Optimality w.r.t the A-norm (change of metric):

$$
\|V\|_{A}^{2}=\mathbb{E}[a(V, V)]=A(V, V)
$$

Definition

Sequential construction:

For $i=1,2,3 \ldots$

$$
\mathcal{J}\left(\lambda_{i} u_{i}\right)=\min _{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+\sum_{j=1}^{i-1} \lambda_{j} u_{j}\right)=\min _{\left.v \in \mathcal{V}_{, \beta, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+U^{i-1}\right)\right) .}
$$

The optimal couple (λ_{i}, u_{i}) solves simultaneously

- a) deterministic problem $\quad u_{i}=\mathcal{D}\left(\lambda_{i}, U^{i-1}\right)$

$$
A\left(\lambda_{i} u_{i}, \lambda_{i} v\right)=B\left(\lambda_{i} v\right)-A\left(U^{i-1}, \lambda_{i} v\right), \quad \forall v \in \mathcal{V}
$$

- b) stochastic problem

$$
\lambda_{i}=\mathcal{S}\left(u_{i}, U^{i-1}\right)
$$

$$
A\left(\lambda_{i} u_{i}, \beta u_{i}\right)=B\left(\beta u_{i}\right)-A\left(U^{i-1}, \beta u_{i}\right), \quad \forall \beta \in \mathcal{S}^{\mathrm{P}}
$$

Definition

Sequential construction:

For $i=1,2,3 \ldots$

$$
\mathcal{J}\left(\lambda_{i} u_{i}\right)=\min _{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+\sum_{j=1}^{i-1} \lambda_{j} u_{j}\right)=\min _{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+U^{i-1}\right)
$$

The optimal couple (λ_{i}, u_{i}) solves simultaneously

- a) deterministic problem

$$
u_{i}=\mathcal{D}\left(\lambda_{i}, U^{i-1}\right)
$$

$$
\int_{\Omega} \mathbb{E}\left[\lambda_{i}^{2} k\right] \nabla u_{i} \cdot \nabla v \mathrm{~d} \boldsymbol{x}=\mathbb{E}\left[-\int_{\Omega} \lambda_{i} k \nabla U^{i-1} \cdot \nabla v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \lambda_{i} f v \mathrm{~d} \boldsymbol{x}\right], \quad \forall v .
$$

- b) stochastic problem

$$
\lambda_{i}=\mathcal{S}\left(u_{i}, U^{i-1}\right)
$$

$\mathbb{E}\left[\lambda_{i} \beta \int_{\Omega} k \nabla u_{i} \cdot \nabla u_{i} \mathrm{~d} \boldsymbol{X}\right]=\mathbb{E}\left[-\beta\left(\int_{\Omega} k \nabla U^{i-1} \cdot \nabla u_{i} \mathrm{~d} \boldsymbol{x}+\int_{\Omega} f u_{i} \mathrm{~d} \boldsymbol{X}\right)\right], \quad \forall \beta$.

Definition

Sequential construction:

For $i=1,2,3 \ldots$

$$
\mathcal{J}\left(\lambda_{i} u_{i}\right)=\min _{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+\sum_{j=1}^{i-1} \lambda_{j} u_{j}\right)=\min _{v \in \mathcal{V}, \beta \in \mathcal{S}^{\mathrm{P}}} \mathcal{J}\left(\beta v+U^{i-1}\right)
$$

The optimal couple (λ_{i}, u_{i}) solves simultaneously

- a) deterministic problem $\quad u_{i}=\mathcal{D}\left(\lambda_{i}, U^{i-1}\right)$

$$
\int_{\Omega} \mathbb{E}\left[\lambda_{i}^{2} k\right] \nabla u_{i} \cdot \nabla v \mathrm{~d} \boldsymbol{x}=\mathbb{E}\left[-\int_{\Omega} \lambda_{i} k \nabla U^{i-1} \cdot \nabla v \mathrm{~d} \boldsymbol{x}+\int_{\Omega} \lambda_{i} f v \mathrm{~d} \boldsymbol{x}\right], \quad \forall v .
$$

- b) stochastic problem

$$
\lambda_{i}=\mathcal{S}\left(u_{i}, U^{i-1}\right)
$$

$$
\mathbb{E}\left[\lambda_{i} \beta \int_{\Omega} k \nabla u_{i} \cdot \nabla u_{i} \mathrm{~d} \boldsymbol{x}\right]=\mathbb{E}\left[-\beta\left(\int_{\Omega} k \nabla U^{i-1} \cdot \nabla u_{i} \mathrm{~d} \boldsymbol{x}+\int_{\Omega} f u_{i} \mathrm{~d} \boldsymbol{x}\right)\right], \quad \forall \beta
$$

- The couple $\left(\lambda_{i}, u_{i}\right)$ is a fixed-point of:

$$
\lambda_{i}=\mathcal{S} \circ \mathcal{D}\left(\lambda_{i}, \cdot\right), \quad u_{i}=\mathcal{D} \circ \mathcal{S}\left(u_{i}, \cdot\right)
$$

\Rightarrow arbitrary normalization of one of the two elements.
Algorithms inspired from dominant subspace methods
Power-type, Krylov/Arnoldi, ...
foificonvou /nzía

Algorithms

Power Iterations

(1) Set $I=1$
(2) initialize λ (e.g. randomly)
(3) While not converged, repeat
a) Solve: $u=\mathcal{D}\left(\lambda, U^{\prime-1}\right)$
b) Normalize u
c) Solve: $\lambda=\mathcal{S}\left(u, U^{l-1}\right)$
(4) Set $u_{I}=u, \lambda_{I}=\lambda$
(5) $I \leftarrow I+1$, if $I<m$ repeat from step 2

Comments:

- Convergence criteria for the power iterations (subspace with dim >1 or clustered eigenvalues)
- Usually few (4 to 5) inner iterations are sufficient

Algorithms

Power Iterations with Update

(1) Same as Power Iterations, but after $\left(u_{l}, \lambda_{l}\right)$ is obtained (step 4) update of the stochastic coefficients:

- Orthonormalyze $\left\{u_{1}, \ldots, u_{l}\right\}$
- Find $\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ s.t.

$$
A\left(\sum_{i=1}^{\prime} u_{i} \lambda_{i}, \sum_{i=1}^{\prime} u_{i} \beta_{i}\right)=B\left(\sum_{i=1}^{I} u_{i} \beta_{i}\right), \quad \forall \beta_{i=1, \ldots, l} \in \times \mathcal{S}^{\mathrm{P}}
$$

(2) Continue for next couple

Comments:

- Improves the convergence
- Low dimensional stochastic linear system ($I \times I$)
- Cost of update increases linearly with the order $/$ of the reduced representation

Algorithms

Arnoldi, Full Update version

(1) Set $I=0$
(2) Initialize $\lambda \in \mathcal{S}^{P}$
(3) For $I^{\prime}=1,2, \ldots$

- Solve deterministic problem $u^{\prime}=\mathcal{D}\left(\lambda, U^{\prime}\right)$
- Orthogonalize: $u_{l+l^{\prime}}=u^{\prime}-\sum_{j=1}^{1+l^{\prime}-1}\left(u^{\prime}, u_{j}\right)_{\Omega}$
- If $\left\|u_{I+I^{\prime}}\right\|_{L^{2}(\Omega)} \leq \epsilon$ or $I+I^{\prime}=m$ then break
- Normalize $u_{I+1^{\prime}}$
- Solve $\lambda=\mathcal{S}\left(u_{I^{\prime}}, U^{\prime}\right)$
(4) $I \leftarrow I+I^{\prime}$
(5) Find $\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ s.t.

$$
A\left(\sum_{i=1}^{1} u_{i} \lambda_{i}, \sum_{i=1}^{\prime} u_{i} \beta_{i}\right)=B\left(\sum_{i=1}^{1} u_{i} \beta_{i}\right), \quad \forall \beta_{i=1, \ldots, l} \in \mathcal{S}^{\mathrm{P}}
$$

(6) If $I<m$ return to step 2 .

Algorithms

Summary

- Resolution of a sequence of deterministic elliptic problems, with elliptic coefficients $\mathbb{E}\left[\lambda^{2} k\right]$ and modified (deflated) rhs
dimension is $\operatorname{dim} \mathcal{V}^{h}$
- Resolution of a sequence of linear stochastic equations dimension is $\operatorname{dim} \mathcal{S}^{\mathrm{P}}$
- Update problems: system of linear equations for stochastic random variables

$$
\text { dimension is } m \times \operatorname{dim} \mathcal{S}^{\mathrm{P}}
$$

- To be compared with the Galerkin problem dimension

$$
\operatorname{dim} \mathcal{V}^{h} \times \operatorname{dim} \mathcal{S}^{P}
$$

Weak modification of existing (FE/FV) codes
(weakly intrusive)

An example

Test case definition: $25 \times 0.695 \mathrm{~km}$

Δ Head (m)	Expectation	Range	distribution
$\Delta h_{1,2}$	+51	± 10	Uniform
$\Delta h_{1,3}$	+21	± 5	Uniform
$\Delta h_{1,6}$	-3	± 2	Uniform
$\Delta h_{2,5}$	-110	± 10	Uniform
$\Delta h_{3,4}$	-160	± 20	Uniform

Uncertain conductivities

Layer	k_{i} median	$k_{i} \min$	$k_{i} \max$	distribution
Dogger	25	5	125	LogUniform
Clay	310^{-6}	310^{-7}	310^{-5}	LogUniform
Limestone	6	1.2	30	LogUniform
Marl	310^{-5}	110^{-5}	110^{-4}	LogUniform

Parameterization

- 9 independent r.v. $\left\{\xi_{1}, \ldots, \xi_{9}\right\} \sim U[0,1]^{9}$
- $\operatorname{dim} \mathcal{S}^{\mathrm{P}}=\mathrm{P}+1=(9+\mathrm{No})!/(9!\mathrm{No}!)$
- $N_{e} \approx 30,000$ finite elements
- $\operatorname{dim}\left(\mathcal{V}^{h}\right) \approx 15,000$
- Dimension of Galerkin problem: $8.210^{5}(\mathrm{No}=2)$,
$3.310^{6}(\mathrm{No}=3)$

An example

Convergence

Galerkin residual (left) and error (right) norms as a function of $m(\mathrm{No}=3)$

An example

CPU times $(\mathrm{No}=3)$

Hierarchical Decomposition

Full separation

So far, deterministic / stochastic separation:

$$
U^{m}(\boldsymbol{x}, \boldsymbol{\xi})=U^{m}\left(\boldsymbol{x}, \xi_{1}, \ldots, \xi_{\mathrm{N}}\right)=\sum_{r=1}^{m} u_{r}(\boldsymbol{x}) \lambda_{r}\left(\xi_{1}, \ldots, \xi_{\mathrm{N}}\right)
$$

where $\lambda_{r}(\xi) \in \mathcal{S}$.
Does not address high-dimensionality issue whenever N is large.
However, if the ξ_{i} are independent, \mathcal{S} has a tensor product structure,

$$
\mathcal{S}=\mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{\mathrm{N}}
$$

we can think of a decomposition of the form

$$
U^{m}(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{r=1}^{m} u_{r}(\boldsymbol{x}) \lambda_{r}^{1}\left(\xi_{1}\right) \ldots \lambda_{r}^{\mathrm{N}}\left(\xi_{\mathrm{N}}\right)
$$

where now $\lambda_{r}^{i}\left(\xi_{i}\right) \in \mathcal{S}_{i}$.

Hierarchical Decomposition

Full separation

Extension of the previous algorithms for the computation of

$$
U^{m}(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{r=1}^{m} u_{r}(\boldsymbol{x}) \lambda_{r}^{1}\left(\xi_{1}\right) \ldots \lambda_{r}^{\mathrm{N}}\left(\xi_{\mathrm{N}}\right),
$$

is straightforward:

- same deterministic problems
- stochastic and update problems for the (separated) λ_{r} are substituted with alternated direction resolutions: iterations over sequence of one-dimensional problems.
For instance, stochastic problem(s) in direction i : find $\lambda \in \mathcal{S}_{i}$ such that

$$
\begin{array}{r}
\mathbb{E}\left[\left(\lambda_{r}^{1} \ldots \lambda \ldots \lambda_{r}^{\mathrm{N}}\right)\left(\lambda_{r}^{1} \ldots \beta \ldots \lambda_{r}^{\mathrm{N}}\right) \int_{\Omega} k \nabla u_{r} \cdot \nabla u_{r} \mathrm{~d} \boldsymbol{x}\right] \\
=\mathbb{E}\left[-\left(\lambda_{r}^{1} \ldots \beta \ldots \lambda_{r}^{\mathrm{N}}\right)\left(\int_{\Omega} k \nabla U^{r-1} \cdot \nabla u_{r} \mathrm{~d} \boldsymbol{x}+\int_{\Omega} f u_{r} \mathrm{~d} \boldsymbol{x}\right)\right], \quad \forall \beta \in \mathcal{S}_{i} .
\end{array}
$$

Hierarchical Decomposition

Full separation

Clearly, using

$$
U^{m}(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{r=1}^{m} u_{r}(\boldsymbol{x}) \lambda_{r}^{1}\left(\xi_{1}\right) \ldots \lambda_{r}^{\mathrm{N}}\left(\xi_{\mathrm{N}}\right),
$$

we trade convergence with complexity reduction.
This can be mitigated using using a R_{λ}-rank approximation of the stochastic coefficients:

$$
U^{m}(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{r=1}^{m} u_{r}(\boldsymbol{x})\left(\sum_{r^{\prime}=1}^{R_{\lambda}} \lambda_{r, r^{\prime}}^{1}\left(\xi_{1}\right) \ldots \lambda_{r, r^{\prime}}^{\mathrm{N}}\left(\xi_{\mathrm{N}}\right)\right),
$$

with a greedy-type approximation of low rank approximation of λ_{r}.

- Extension of the algorithms is immediate
- R_{λ} can be made rank dependent
- Efficient implementation requires separated representation of the operator.

ECOLE
POITTECHNIQU:

Hierarchical Decomposition

An example: diffusion

- Independent random conductivities over 7 sub-domains, with same distribution (log-normal): $\mathrm{N}=7$
- $\mathcal{S}_{i=1,7}=\Pi_{10}(\mathbb{R})$, so $\operatorname{dim} \mathcal{S}=11^{7}$

(Damped) Wave equation

Wave equation (Deterministic)

Consider the deterministic wave equation,

$$
\begin{aligned}
& -\omega^{2} \rho u(\boldsymbol{x})-\boldsymbol{\nabla} \cdot(\tilde{\kappa} \nabla u(\boldsymbol{x}))=f(\boldsymbol{x}), \\
& u(\boldsymbol{x} \in \partial \Omega)=0
\end{aligned}
$$

- ω is the frequency
- ρ the density
- $\tilde{\kappa} \doteq \kappa(1-i \beta \omega) \in \mathbb{C}$ the wave velocity with $\kappa, \beta>0$

Let $L_{2}(\Omega)=L_{2}(\Omega, \mathbb{C})$ with inner product and norm

$$
(u, v)_{\Omega}=\operatorname{Re}\left(\int_{\Omega} u^{*}(\boldsymbol{x}) v(\boldsymbol{x}) d \Omega\right), \quad\|u\|_{L_{2}(\Omega)}^{2}=(u, u)_{\Omega}
$$

The weak formulation: Find $u \in H_{0}^{1}(\Omega, \mathbb{C})$ such that

$$
a(u, v)-b(v)=0 \quad \forall v \in H_{0}^{1}(\Omega)
$$

with the bilinear and linear forms

Wave equation (Stochastic version)

Take now ω, ρ and κ as second order random variable defined on a probability space $\mathcal{P}=\left(\Theta, \Sigma_{\Theta}, \mu\right)$.
We extend $L_{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ to $L_{2}(\Omega, \Theta)$ and $H_{0}^{1}(\Omega, \Theta)$ by tensorization, and we assume

$$
U(\boldsymbol{x}, \theta) \in L_{2}(\Omega, \Theta) \Leftrightarrow \mathbb{E}\left[(U(\cdot), U(\cdot))_{\Omega}\right]<\infty .
$$

Variational form of the stochastic wave equation
Find $U \in H_{0}^{1}(\Omega, \Theta)$ such that

$$
A(U, V)-B(V)=0, \quad \forall V \in H_{0}^{1}(\Omega, \Theta)
$$

where

$$
A(U, V)=\mathbb{E}\left[\operatorname{Re}\left[-\omega^{2}(\theta) \int_{\Omega} U^{*}(\theta) V(\Theta) d \Omega+\int_{\Omega} \kappa(\theta) \nabla U^{*}(\theta) \cdot \nabla V(\theta) d \Omega\right]\right]
$$

and

$$
B(V)=\mathbb{E}\left[\operatorname{Re}\left[\int_{\Omega} f^{*} V(\theta) d \Omega\right]\right]
$$

$\underset{\substack{\text { ECOLE } \\ \text { PIYTEC }}}{\substack{\text { n }}}$

(Damped) Wave equation

PGD approximation

We seek for $U \in H_{0}^{1}(\Omega, \Theta)=H_{0}^{1}(\Omega) \otimes L_{2}(\Theta)$ has the separated form

$$
U(\boldsymbol{x}, \theta)=\sum_{r=0}^{r=\infty} u_{r}(\boldsymbol{x}) \lambda_{r}(\theta), \quad u_{r} \in H_{0}^{1}(\Omega), \lambda_{r} \in L_{2}(\Theta)
$$

following the PGD approach based on the deterministic and stochastic problems

$$
\begin{array}{lll}
u_{R}=D\left(U^{R-1}, \lambda_{R}\right): & A\left(U^{R-1}+u_{R} \lambda_{R}, v \lambda_{R}\right)-B\left(v \lambda_{R}\right)=0, \forall v \in H_{0}^{1}(\Omega) & \text { Deter. problem } \\
\lambda_{R}=S\left(U^{R-1}, u_{R}\right): & A\left(U^{R-1}+u_{R} \lambda_{R}, u_{R} \beta\right)-B\left(u_{R} \beta\right)=0, \forall \beta \in L_{2}(\Theta) & \text { Stoch. problem }
\end{array}
$$

and update problem:
given $u_{r=1, \ldots, R}$ compute $\lambda_{r=1, \ldots, R}$ such that

$$
A\left(\sum_{r=0}^{R} u_{r} \lambda_{r}, u_{r^{\prime}} \beta\right)-B\left(u_{r^{\prime}} \beta\right)=0, \quad \forall \beta \in L_{2}(\Theta) \text { and } r^{\prime}=1, \ldots, R .
$$

PGD-Arnoldi algorithm

Assume rank- R approximation has been obtained.
(1) Initialization: set $\lambda \in L_{2}(\Theta), I=0$
(2) Arnoldi subspace generation:

- Set $w=D\left(U^{R}, \lambda\right)$
- For $r=1, \ldots, R+I w \leftarrow\left(w, u_{r}\right)_{\Omega}$
- If $h=(w, w)_{\Omega}<\varepsilon$ break
- Set $I \leftarrow I+1, u_{R+I}=w / h$
- Set $\lambda=S\left(U^{R}, u_{R+1}\right)$
- Repeat for next Arnoldi vector
(3) Update solution: set $R \leftarrow R+I$ and solve

$$
A\left(\sum_{r=0}^{R} u_{r} \lambda_{r}, u_{r^{\prime}} \beta\right)-B\left(u_{r^{\prime}} \beta\right)=0, \quad \forall \beta \in L_{2}(\Theta) \text { and } r^{\prime}=1, \ldots, R .
$$

(4) Check residual to restart at step 1 or stop

Advantage: limited number of deterministic problem solves to generate the deterministic basis.

ECOLE
POIVTECHNIQUE

Stochastic parametrization

We introduce a finite set of N independnt real-valued r.v. $\boldsymbol{\xi} \doteq\left(\xi_{1} \ldots \xi_{\mathrm{N}}\right)$ with uniform distribution on $\equiv \doteq \mathbb{1}_{N}$. The random frequency, density and stiffness are parametrized using $\boldsymbol{\xi}$,

$$
(\omega, \kappa, \rho)(\theta) \longrightarrow(\omega, \kappa, \rho)(\boldsymbol{\xi}(\theta)),
$$

and U is sought in the image probability space:

$$
H_{0}^{1}(\Omega, \equiv) \ni U(\boldsymbol{x}, \boldsymbol{\xi}(\theta)) \approx \sum_{r=1}^{R} u_{r}(\boldsymbol{x}) \lambda_{r}(\boldsymbol{\xi}(\theta)) .
$$

- $U(\boldsymbol{x}$,$) is expected to be smooth a.s.: need for a limited number of spatial modes$ to span the stochastic solution space,
- $U(\cdot, \boldsymbol{\xi})$ can exhibit steep and complex dependences with respect to the input parameters.
The complexity of the mapping $\boldsymbol{\xi} \in \equiv \mapsto U(\cdot, \boldsymbol{\xi}) \in H_{0}^{1}(\Omega)$ reflects in the stochastic coefficients $\lambda_{r}(\boldsymbol{\xi})$ and calls for appropriate discretization at the stochastic level.

stochastic multi-resolution framework

Presently, we use piecewise polynomial approximations at the stochastic level:

- 三 is adaptively decomposed into sub-domains through a sequence a dyadic (1d) partitions
- A tree structure is used to manage the resulting stochastic space
- Multi-resolution analysis is used to control the local adaptation (anisotropic refinement of the partition of 三)
- Stochastic and update problems are solved independently over the sub-domains (efficient parallelization)
(see [Tryoen, LM and Ern, SISC 2012])

PGD-Arnoldi with Adaptation at the Stochastic level

Given the approximation U^{r} and a stochastic space \mathcal{S}^{r}
(1) Arnoldi iterations to generate orthonormal $u_{r+1}, \ldots u_{r+1}$, using $\lambda \in \mathcal{S}^{r}$
(2) set $r \leftarrow r+1$
(3) While not satisfying accuracy criterion, repeat

- Solve the update problem for $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ in \mathcal{S}^{r}
- Enrich adaptively \mathcal{S}^{r}
(4) Compute residual norm
(5) If not converge restart at step 1 .

Observe:

- Same approximation space for all stochastic coefficients (ease implementation and favor parallelization)
- Continuous enrichment, no coarsening
- Successive Arnoldi spaces generated using an coarse stochastic space! (in fact robust)
- Accuracy requirement should balance stochastic discretization and reduced space errors.

(Damped) Wave equation

Example

- $\log (\kappa) \sim U[-4:-2]$
- $\omega \sim U[0.5,1]$
- $\rho=1$ and $\beta=0.05$
- Third order (Legendre) expansion.

$$
r=8
$$

$$
r=13
$$

$$
r=19
$$

$$
r=26
$$

$$
r=30
$$

（Damped）Wave equation

Example

Selected Arnoldi modes：real part（top）and imaginary part（bottom）
$r=1 \quad r=3 \quad r=5 \quad r=15$
$r=25$

$r=1$
$r=3$
$r=15$
$r=25$

(Damped) Wave equation

Example

Stochastic Navier-Stokes equations

Consider the steady, incompressible Navier-Stokes equations

$$
\begin{array}{lr}
\boldsymbol{U}(\theta) \boldsymbol{\nabla} \boldsymbol{U}(\theta)=-\boldsymbol{\nabla} P(\theta)+\nu(\theta) \nabla^{2} \boldsymbol{U}(\theta)+\boldsymbol{f}(\theta) & \text { in } \Omega, \\
\boldsymbol{\nabla} \cdot \boldsymbol{U}(\theta)=0 & \text { in } \Omega, \\
\boldsymbol{U}(\theta)=0 & \text { on } \partial \Omega
\end{array}
$$

in a bounded (2d) domain Ω.
In view of PGD of the solution, we need to consider (mainly)
(1) non-linear character (increases when $\nu \downarrow 0$)
(2) enforcement of the divergence free constraint
(3) stabilization (upwinding) due to the convective term

None of these will be really address here, simply numerical experiments!
[Tamellini, LM, Nouy, SISC, 2014]
$\underset{\substack{\text { ECOOLE } \\ \text { POIVIEC }}}{ }$

PGD for the Stochastic NS eq.

Weak form

Deterministic space $\mathcal{V}=H_{0, \text { div }}^{1}(\Omega)$.
Weak formulation: Find $U \in \mathbb{X} \doteq \mathcal{V} \otimes \mathcal{S}$ such that

$$
\mathbb{E}\left[\int_{\Omega}[(U(\theta) \nabla U(\theta)) \cdot V(\theta)+\nu(\theta) \nabla U(\theta) \nabla V(\theta)-F(\theta) \cdot V(\theta)] d x\right] \quad \forall V \in \mathbb{X}
$$

The deterministic problem $u=D\left(\lambda, U^{m}\right)$ writes: $\forall v \in \mathcal{V}$

$$
\begin{aligned}
& \int_{\Omega}\left(\mathbb{E}\left[\lambda^{3}\right] u \nabla u\right.\left.+u \nabla \bar{u}_{m}(\lambda)+\bar{u}_{m}(\lambda) \nabla u\right) \cdot v d x+\int_{\Omega} \mathbb{E}\left[\nu \lambda^{2}\right] \nabla u \nabla v d x \\
&=\int_{\Omega} \mathbb{E}\left[\lambda\left(F-U^{m} \nabla U^{m}\right)\right] \cdot v d x-\int_{\Omega} \mathbb{E}\left[\nu \lambda \nabla U^{m}\right] \nabla v d x .
\end{aligned}
$$

where $\bar{u}_{m}(\lambda)=\mathbb{E}\left[\lambda^{2} U^{m}\right]$.
Stochastic problem $\lambda=S\left(u, U^{m}\right)$ writes: $\forall \beta \in \mathcal{S}$

$$
\begin{aligned}
\mathbb{E}\left[\lambda^{2} \beta\right] \int_{\Omega}(u \nabla u \cdot u) d x+ & \mathbb{E}\left[\lambda \beta \int_{\Omega}\left(u \nabla U^{m}+U^{m} \nabla u\right) \cdot u d x\right]+\int_{\Omega} \mathbb{E}[\nu \lambda \beta] \nabla u \nabla u d x \\
& =\mathbb{E}\left[\beta \int_{\Omega}\left(F-U^{m} \nabla U^{m}\right) \cdot u d x\right]-\mathbb{E}\left[\beta \int_{\Omega} \nu \nabla U^{m} \nabla u d x\right] .
\end{aligned}
$$

Complexity

- Resolution of a sequence of deterministic problems, NS + Lin. term and deflated rhs
dimension is $\operatorname{dim} \mathcal{V}^{h}$
- Resolution of a sequence of quadratic stochastic equations

$$
\text { dimension is } \operatorname{dim} \mathcal{S}
$$

- Update problems: system of quadratique equations for stochastic random variables
dimension is $m \times \operatorname{dim} \mathcal{S}$
- To be compared with the Galerkin problem dimension

$$
\operatorname{dim} \mathcal{V}^{h} \times \operatorname{dim} \mathcal{S}
$$

Weak modification of existing (FE/FV) codes (weakly intrusive)

Example

Stochastic discretization:

- Parametrization of $\nu(\theta)$ and $\boldsymbol{F}(\theta)$ using N i.i.d. random variables:

$$
\boldsymbol{\xi}=\left\{\xi_{1}, \ldots, \xi_{\mathrm{N}}\right\} \sim N\left(0, I^{2}\right)
$$

- Wiener-Hermite polynomials for the basis for \mathcal{S}

$$
\lambda(\theta)=\sum_{\alpha} \lambda_{\alpha} \Psi_{\alpha}(\boldsymbol{\xi}(\theta))
$$

- Truncature to (total) polynomial degree No:

$$
\operatorname{dim} \mathcal{S}=\frac{(\mathrm{No}+\mathrm{N})!}{\mathrm{No}!\mathrm{N}!}
$$

Example

Case of a deterministic forcing and a random (Log-normal) viscosity:

$$
\nu(\theta)=\frac{1}{200} \exp \left(\frac{\sigma_{\nu}}{\sqrt{\mathrm{N}}} \sum_{i=1}^{\mathrm{N}} \xi_{i}(\theta)\right)\left(+10^{-4}\right), \quad \xi_{i} \sim N(0,1) \text { i.i.d. }
$$

Same problem but for parametrization involving N Gaussian R.V.
Galerkin solution for $\mathrm{N}=1$ and $\mathrm{No}=10$ (Wiener-Hermite expansion)

Mean and standard deviation of U^{G} rotational.
CITS - ficolechnou: Ćnzía

Example

First PGD-Arnoldi modes for $\mathrm{N}=1$ and $\mathrm{No}=10$

Example

Convergence of PGD solution $\mathrm{N}=1$ and $\mathrm{No}=10$

Convergence with rank of resiudal and error norms; POD coefficients at $m=15$ (right)

Norms of the POD coefficients at $m=15$ (left), residual norm (center), $|\lambda|$'s norm (right).
Cirs -

Example

Stochastic forcing \boldsymbol{F} : Hodge's decomposition

$$
\boldsymbol{F}(\boldsymbol{x}, \theta) \approx \boldsymbol{F}^{\mathrm{N}}(\boldsymbol{x}, \boldsymbol{\xi}(\theta))=\boldsymbol{f}^{0}+\sum_{k=0}^{\mathrm{N}} \sqrt{\gamma_{k}} \boldsymbol{f}^{k}(\boldsymbol{x}) \xi_{k}(\theta)
$$

KL modes of the forcing:

scale $=1$	scale $=5$	scale $=5$	scale $=5$	scale $=15$
				(4,
scale $=15$	scale $=15$	scale $=15$	scale $=25$	scale $=25$

Forcing modes for $L=1, \sigma / f_{\omega}^{0}=0.2$

Example

First PGD-Arnoldi modes

Example

Results at $\bar{\nu}=1 / 50: \mathrm{No}=3, \mathrm{~N}=11, \mathrm{P}=364$

Residual (left), $\left\|U^{m}-U^{G}\right\|$ (center) and norm of POD modes for $m=45$ (right). Essentially <50 Navier-Stokes solves!

Example

Residual computation:

- computation of the residual in $H_{0, \text { div }}^{1}(\Omega)$
- need to reconstruct the pressure
- 2 alternatives: apply PGD to the pressure unknown, given the reduced velocity approximation, or recycle the pressure fields associated to the enforcement of the divergence-free constraint during the Arnoldi process as a reduced pressure basis.

Comparison of different error measures of the PGD solution at $\bar{\nu}=1 / 10,1 / 50$ and $1 / 100$ (from left to right).

Proper Generalized Decomposition

Questions \& Discussion

