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Galerkin Method Galerkin Projection of Linear / Non-linear Models Proper Generalized Decomposition

Objectives of the lecture

Basic principle of stochastic Galerkin projection

Discuss derivation and elementary building blocks of the Galerkin projection

Galerkin linear models and evaluation of non-linearities

PGD and reduced basis methods.
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Stochastic Galerkin projection

Galerkin projection

Weak solution of the stochastic problemM(U(ξ); D(ξ)) = 0

Needs adaptation of deterministic codes
Potentially more efficient than NI techniques.

Better suited to improvement (error estimate, optimal and basis reduction, . . . ),
thanks to functional analysis.
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Stochastic Galerkin projection

Stochastic discretization
Let SP ⊂ L2(Ξ, pξ) defined as

SP = span{Ψ0, . . . ,ΨP},

where the {Ψk} are orthogonal functionals in ξ, e.g. a PC basis truncated to an order
No.

SP is called the stochastic approximation space
We seek for the approximate stochastic model solution in V ⊗ SP.

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ).

Inserting UP in the weak formulation yields the stochastic residual〈
M(UP(ξ); D(ξ)), β(ξ)

〉
=
〈
R(UP), β

〉
.
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Stochastic Galerkin projection

Galerkin projection [Ghanem & Spanos, 1991]〈
M(UP(ξ); D(ξ)), β(ξ)

〉
=
〈
R(UP), β

〉
.

In general, one cannot find UP ∈ V ⊗ SP such that〈
R(UP), β

〉
= 0 ∀β ∈ L2(Ξ, pξ).

It is then required that R(UP) is orthogonal to the stochastic approximation space:〈
M(UP(ξ); D(ξ)), β(ξ)

〉
= 0 ∀β ∈ SP.

This weak formulation corresponds to the stochastic Galerkin formulation.

The actual formulation is obtained in practice by projecting all model equations on
SP (see examples later).
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Stochastic Galerkin projection

The Galerkin projection results in a set of P + 1 coupled problems for the stochastic
modes uk of the solution.

Find {uk , k = 0, . . . , P + 1} ∈ VP+1 such that〈
M
(

P∑
k=0

uk Ψk (ξ); D(ξ)

)
,Ψl (ξ)

〉
= 0, l = 0, . . . , P.

The size of the Galerkin problem increases with P.

Recall that P = 1 = (N + No)!/N!No! for polynomial truncation at order No.

This can be very costly for complex problems requiring large parametrization and
large expansion order.

Projections on the Ψl of the model equations can be problematic in presence of
non-linearities.
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Stochastic Galerkin projection

The Galerkin projection for the elliptic problem:
Find U(x , ξ) ∈ H1

0 ⊗ L2(Ξ,PΞ) such that

A(U,V ; D) = B(V ) ∀V (x , ξ) ∈ H1
0 ⊗ L2(Ξ,PΞ),

where

A(U,V ; D) = E
[∫

Ω
ν(x , ξ)∇U(x , ξ) ·∇V (x , ξ)dx

]
, B(V ) = E

[∫
Ω

F (x , ξ)V (x , ξ)dx
]
.

Introducing the PC expansion of U, it comes the coupled set of deterministic problems:
Find {uk}k=0,...,P ∈ (H1

0 )P+1 such that

P∑
l=0

akl (ul , v) = bk (v) ∀v ∈ H1
0 , k = 0, . . . , P,

where

akl (u, v) =

∫
Ω
E [ν(x , ξ)Ψk (ξ)Ψl (ξ)]∇u·∇vdx , bk (v) =

∫
Ω
E [f (x , ξ)Ψk (ξ)]v(x)dx .
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Stochastic Galerkin projection

Galerkin projection of discrete deterministic problems
The previous development can be applied to models discretized at the deterministic
level.
Seeking for for U(ξ) ≈ UP ∈ Rm ⊗ SP, we obtain Find
{uk , k = 0, . . . , P + 1} ∈ (Rm)P+1 such that〈

Mh

(
P∑

k=0

uk Ψk (ξ); D(ξ)

)
,Ψl (ξ)

〉
= 0, l = 0, . . . , P.

For many models, apply the stochastic discretization before the deterministic
discretization results in the same Galerkin problem as proceeding the reverse way,
provided that Vh is independent of ξ. Exceptions include, e.g.,

Lagrangian formulations [OLM & OK, JCP 2009],

treatment of geometric uncertainties.
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Linear Models

The linear Galerkin problem couples all the stochastic modes ui ∈ Rm of the
stochastic solution.

It is not possible in general to compute independently the components ui .

The size of the spectral problem is large: m × dimSP = m × (P + 1).

Resolution of the linear Galerkin system can be demanding.

An understanding of the block structured system is instructive to design and apply
well-suited numerical methods.
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Linear Models

Structure of Galerkin problems for uncertain linear operators

N = 4-dimSP = 35-S = 0.58 N = 6-dimSP = 84-S = 0.41

N = 8-dimSP = 165-S = 0.31 N = 10-dimSP = 286-S = 0.23

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks [A]ij
that are generally non-zero appear as black squares.
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Linear Models

Structure of Galerkin problems for uncertain linear operators

No = 2-dimSP = 21-S = 0.52 No = 3-dimSP = 56-S = 0.49

No = 4-dimSP = 126-S = 0.54 No = 5-dimSP = 252-S = 0.55

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks

[A]ij that are generally non-zero appear as black squares.
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Linear Models

Examples above assumes that [A](ξ) has a full spectrum in SP.

When [A](ξ) has a first-order expansion, the block structure of the linear spectral
problem becomes even sparser.

This behavior motivates the selection, whenever possible, of an approximation
based on a first order operator.
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Linear Models

Structure of Galerkin problems for uncertain linear operators

No = 2-dimSP = 21-S = 0.184 No = 3-dimSP = 56-S = 0.084

No = 4-dimSP = 126-S = 0.043 No = 5-dimSP = 252-S = 0.024

Case of a linear stochastic operator [A](ξ) having a first-order expansion.
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Linear Models

The main difficulty in solving discrete linear spectral problems is the size of the
system.

The structure and sparsity of the linear Galerkin problem suggests iterative
solution strategies.

Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and
Krylov subspace methods) can be used.

The efficiency of iterative solvers depends on the availability of appropriate
preconditioners which need be adapted to the Galerkin problem.

Construction of the preconditioners to exploit the block-structure of the linear
Galerkin problem.
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Galerkin Approximation of Non-Linearities

Many models involve non-linearities of various types and their treatment is critical in
stochastic Galerkin methods

Let {Ψk (ξ)}P
k=0 be an orthogonal basis of SP ⊂ L2(Ξ,PΞ), and f a non-linear

functional u, v , . . .:
u, v , · · · ∈ R 7→ f (u, v , . . . ) ∈ R.

For random arguments, U(ξ),V (ξ), · · · ∈ R⊗ SP, we generally have
f (U,V , . . . ) =: G(ξ) /∈ R⊗ SP, but if G(ξ) ∈ R⊗ L2(Ξ,PΞ) it has an orthogonal
projection on SP,

G (ξ) ≈ Ĝ =
P∑

k=0

gk Ψk , gk =
〈f (U,V , . . . ),Ψk 〉〈

Ψ2
k

〉 .

The problem is therefore to derive efficient strategies to compute the expansion
coefficients gk of Ĝ(ξ) from the expansion coefficients of its arguments U(ξ),V (ξ), . . . .
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

The product of two quantities appears in many models.

It corresponds to the case G(ξ) = W (ξ) = U(ξ)V (ξ) for U,V ∈ SP having known
expansions. Clearly,

W (ξ) =
P∑

i=0

P∑
j=0

ui vj Ψi (ξ)Ψj (ξ).

and in general W (ξ) /∈ SP though it is in L2(Ξ,PΞ). Therefore, Ŵ , the orthogonal
projection of W on SP, has expansion coefficients

wk =
〈W ,Ψk 〉〈

Ψ2
k

〉 =
P∑

i=0

P∑
j=0

ui vj Cijk .

The result of the orthogonal projection of UV is called the Galerkin product of U and V
and is denoted U ∗ V .
The Galerkin product introduces truncation errors by disregarding the components of
UV orthogonal to SP.
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

Higher order polynomial non-linearities are also frequent.
Consider first the triple product G(ξ) = U(ξ)V (ξ)W (ξ) One can again perform an
exact Galerkin projection of the triple product:

ÛVW :=
P∑

m=0

ûvwmΨm =
P∑

m=0

Ψm

 P∑
j,k,l=0

Tjklmuj vk wl

 ,

Tjklm ≡
〈
Ψj Ψk Ψl Ψm

〉
〈ΨmΨm〉

.

This exact Galerkin projection of the triple product involves the fourth order
tensor Tjklm.

Tjklm is sparse with many symmetries .

However, computation and storage of Tjklm becomes quickly prohibitive when P
increases.

The exact Galerkin projection can hardly be extended further to higher order
polynomial non-linearities.
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

It is often preferred to rely on approximations for polynomial non-linearities of order
larger than 2. For the triple product, an immediate approximation is

ÛVW ≈ U ∗ (V ∗W ) = ÛV̂W .

This strategy can be extended to higher degree polynomial non-linearities by using
successive Galerkin products. For instance,

̂ABC . . .D ≈ A ∗ (B ∗ (C ∗ (. . . ∗ D))).

This procedure does not provide the exact Galerkin projection, since every
intermediate product disregards the part orthogonal to SP. Even for the triple product it
is remarked that, in general

U ∗ (V ∗W ) 6= (U ∗ V ) ∗W 6= (U ∗W ) ∗ V .

The order in which the successive Galerkin products are applied affects the result.
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Galerkin Approximation of Non-Linearities

Inverse and square root

Inverse and division are also common non-linearities.
For the inversion, one has to determine the expansion coefficients of the inverse U−1

of U(ξ),

U−1(ξ) =
1

U(ξ)
=

(
P∑

k=0

uk Ψk (ξ)

)−1

,

such that
U−1(ξ)U(ξ) = 1 a.s.

U−1 is sought in SP and the previous equation needs to be interpreted in a weak
sense. Using the Galerkin multiplication tensor, it comes

∑P
j=0 Cj00uj . . .

∑P
j=0 CjP0uj

...
. . .

...∑P
j=0 Cj0Puj . . .

∑P
j=0 CjPPuj




u−1
0
...

u−1
P

 =

 1
...
0

 .

Due to truncature error, the above definition corresponds to the pseudo-spectral
inverse U∗−1of U.
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Galerkin Approximation of Non-Linearities

Inverse and square root
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Pseudo-spectral approximation at different orders of the inverse Y (ξ) = Û−1(ξ) of U(ξ) = 1 + αξ with ξ ∼ N(0, 1): α = 1/5 (left),

1/4 (center) and 1/3 (right). Wiener-Hermite expansions are used.

Extend immediately to the evaluation of U/V
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Galerkin Approximation of Non-Linearities

Inverse and square root

The Galerkin product can also serve to approximate square roots.
Given U(ξ) > 0 we have

U1/2(ξ)U1/2(ξ) = U(ξ).

The approximate U∗1/2 ∈ SP of U1/2 solves
∑P

j=0 Cj00u1/2
j . . .

∑P
j=0 CjP0u1/2

j
...

. . .
...∑P

j=0 Cj0Pu1/2
j . . .

∑P
j=0 CjPPu1/2

j




u1/2
0

...
u1/2

P

 =

 u0
...

uP

 .

This non-linear system can be solved using standard techniques (Newton-Raphson
iterations) Choosing for the initial guess U∗1/2(ξ) = ±√u0 allows for the selection of
the positive or negative square root of U(ξ).
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Galerkin Approximation of Non-Linearities

Absolute values

Application to the approximation of absolute values
U(ξ) = ξ U(ξ) = 1 + ξ/2
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Wiener-Hermite expansions. Bottom plots: ξ ∼ U(−1, 1) and Wiener-Legendre expansions.
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Galerkin Approximation of Non-Linearities

Other non-linearities

For sufficiently differentiable non-linearities one can rely on Taylor series

f (u) = f (û) + (u − û)f ′(û) +
(u − û)2

2
f ′′(û) + · · ·

In the stochastic case, it is common to expand the series about the mean u0 of U, at
which f ′(u0), f ′′(u0), · · · can be evaluated.
Successive powers of δU := U − u0 can be evaluated in a pseudo-spectral fashion

S 3 F (U) ≈ f (u0) + δUf ′(u0) +
δU ∗ δU

2
f ′′(u0) +

δU ∗ δU ∗ δU
6

f ′′′(u0) + · · ·

Convergence of the approximation needs be carefully analyzed.

Impact of the pseudo spectral error is critical.

Radius of convergence often unknown.
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Galerkin Approximation of Non-Linearities

Other non-linearities

Integration approach for differentiable non-linearities [Debusschere et al, 2004]

If f (·) is analytical with derivative f ′(·), f can be defined as some integral of f ′ along a
deterministic integration path.
Let Y (s, ξ) be a stochastic processes of L2(Ξ,PΞ), and consider G(s, ξ) := f (Y ):

Y = Y (s, ξ) =
P∑

k=0

yk (s)Ψk (ξ), G = G(s, ξ) =
P∑

k=0

gk (s)Ψk (ξ).

Therefore, we have ∫ s2

s1

∂G
∂s

ds =

∫ s2

s1

G′
∂Y
∂s

ds

P∑
k=0

Ψk

∫ s2

s1

dgk

ds
ds =

P∑
k=0

Ψk [gk (s2)− gk (s1)]

=
P∑

i=0

P∑
j=0

Ψi Ψj

∫ s2

s1

g′i (s)
dyj

ds
ds.
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Galerkin Approximation of Non-Linearities

Other non-linearities

The integration path is set such that for all k = 0, . . . , P

Y (s1, ξ) = Û, Y (s2, ξ) = U, (1)

we obtain

F (U(ξ))k = F (Û)k +
P∑

i=0

P∑
j=0

Cijk

∫ uj

ûj

f ′i dyj , ∀k = 0, . . . , P.

Provided that

the PC expansion of F (Û) is known,

the PC expansion of F ′(·) is easily computed along the integration path,

the computation of F (U) amounts to solve a set of coupled ODEs.
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Galerkin Approximation of Non-Linearities

Other non-linearities

Example: exponential f (u) = exp(u).
We simply set Y (s, ξ) = sU(ξ), s1 = 0 and s2 = 1.
Since exp(u)′ = u, we obtain the the set of coupled ODEs:

dgk

ds
=

P∑
i=0

P∑
j=0

Cijk ui gk , k = 0, . . . , P,

to be integrated up to s = 1 from the initial condition

gk (s = 0) = 〈exp 0,Ψk 〉 = δk,0 k = 0, . . . , P.

Standard techniques for ODEs can be used.

Integration and stochastic truncation error control is critical.
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Galerkin Approximation of Non-Linearities

Other non-linearities

Non-intrusive projections

For general non-linearities F (U,V , . . . ) it is possible to proceed by non-intrusive
projection techniques:

fk :=
〈F (U,V , . . . ),Ψk 〉〈

Ψ2
k

〉 . (2)

Results in hybrid Galerkin / non-intrusive approaches when used in intermediate
step of a Galerkin projection method (case of complex non-linear model).

∇ · (ν(U)∇U) = g with BCs. (3)

Interest can be questionable.
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Definition

Separated representation

The rank-m PGD approximation of U is [Nouy, 2007, 2008, 2010]

U(x, θ) ≈ Um(x, θ) =
m<P∑
α=1

uα(x)λα(θ), λα ∈ SP
, uα ∈ V.

Interpretation: U is approximated on

the stochastic reduced basis {λ1, . . . , λm} of SP

the deterministic reduced basis {u1, . . . , um} of V
none of which is selected a priori

The questions are then:

how to define the (deterministic or stochastic) reduced basis ?

how to compute the reduced basis and the m-terms PGD of U ?
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Definition

Optimal L2-spectral decomposition

POD, KL decomposition

Um(x, θ) =
m∑
α=1

uα(x)λα(θ) minimizes E
[
‖Um − U‖2

L2(Ω)

]
The modes uα are the m dominant eigenvectors of the kernel E [U(x , ·)U(y , ·)]:∫

Ω

E [U(x, ·)U(y, ·)] uα(y)dy = βuα(x), ‖uα‖L2(Ω)
= 1.

The modes are orthonormal:
λα(θ) =

∫
Ω

U(x, θ)uα(x)dx

However U(x , θ), so E [u(x , ·)u(y , ·)] is not known!

Solve the Galerkin problem in Vh ⊗ SP′<P to construct {uα}, and then solve for
the
{
λα ∈ SP

}
.

Solve the Galerkin problem in VH ⊗ SP to construct {λα}, and then solve for the{
uα ∈ Vh} with dimVH � dimVh.

See works by groups of Ghanem and Matthies.
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Definition

Alternative definition of optimality

A(·, ·) is symmetric positive definite, so U minimizes the energy functional

J (V ) ≡
1
2

A(V ,V )− B(V )

We define Um through

J (Um) = min
{uα},{λα}

J
(

m∑
α=1

uαλα

)
.

Equivalent to minimizing a Rayleigh quotient

Optimality w.r.t the A-norm (change of metric):

‖V‖2
A = E [a(V ,V )] = A(V ,V )
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Definition

Sequential construction:

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)

A(λi ui , λi v) = B(λi v)− A
(

U i−1
, λi v

)
, ∀v ∈ V

b) stochastic problem λi = S(ui ,U i−1)

A(λi ui , βui ) = B(βui )− A
(

U i−1
, βui

)
, ∀β ∈ SP
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Definition

Sequential construction:

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)∫
Ω

E
[
λ

2
i k
]
∇ui ·∇vdx = E

[
−
∫

Ω

λi k∇U i−1 ·∇vdx +

∫
Ω

λi fvdx
]
, ∀v .

b) stochastic problem λi = S(ui ,U i−1)

E
[
λiβ

∫
Ω

k∇ui ·∇ui dx
]

= E
[
−β
(∫

Ω

k∇U i−1 ·∇ui dx +

∫
Ω

fui dx
)]

, ∀β.
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Definition

Sequential construction:

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)∫
Ω

E
[
λ

2
i k
]
∇ui ·∇vdx = E

[
−
∫

Ω

λi k∇U i−1 ·∇vdx +

∫
Ω

λi fvdx
]
, ∀v .

b) stochastic problem λi = S(ui ,U i−1)

E
[
λiβ

∫
Ω

k∇ui ·∇ui dx
]

= E
[
−β
(∫

Ω

k∇U i−1 ·∇ui dx +

∫
Ω

fui dx
)]

, ∀β.

The couple (λi , ui ) is a fixed-point of:

λi = S ◦ D(λi , ·), ui = D ◦ S(ui , ·)

⇒ arbitrary normalization of one of the two elements.

Algorithms inspired from dominant subspace methods
Power-type, Krylov/Arnoldi, . . .
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Algorithms

Power Iterations

1 Set l = 1
2 initialize λ (e.g. randomly)
3 While not converged, repeat (power iterations)

a) Solve: u = D(λ,U l−1)
b) Normalize u
c) Solve: λ = S(u,U l−1)

4 Set ul = u, λl = λ

5 l ← l + 1, if l < m repeat from step 2

Comments:
Convergence criteria for the power iterations (subspace with dim > 1 or clustered
eigenvalues) [Nouy, 2007,2008]

Usually few (4 to 5) inner iterations are sufficient
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Algorithms

Power Iterations with Update

1 Same as Power Iterations, but after (ul , λl ) is obtained (step 4) update of the
stochastic coefficients:

Orthonormalyze {u1, . . . , ul} (optional)
Find {λ1, . . . , λl} s.t.

A

(
l∑

i=1

uiλi ,
l∑

i=1

uiβi

)
= B

(
l∑

i=1

uiβi

)
, ∀βi=1,...,l ∈ ×SP

2 Continue for next couple

Comments:
Improves the convergence

Low dimensional stochastic linear system (l × l)

Cost of update increases linearly with the order l of the reduced representation
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Algorithms

Arnoldi, Full Update version

1 Set l = 0
2 Initialize λ ∈ SP

3 For l ′ = 1, 2, . . . (Arnoldi iterations)
Solve deterministic problem u′ = D(λ,U l )

Orthogonalize: ul+l′ = u′ −
∑l+l′−1

j=1 (u′, uj )Ω

If ‖ul+l′‖L2(Ω)
≤ ε or l + l′ = m then break

Normalize ul+l′

Solve λ = S(ul′ ,U
l )

4 l ← l + l ′
5 Find {λ1, . . . , λl} s.t. (Update)

A

(
l∑

i=1

uiλi ,
l∑

i=1

uiβi

)
= B

(
l∑

i=1

uiβi

)
, ∀βi=1,...,l ∈ SP

6 If l < m return to step 2.
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Algorithms

Summary

Resolution of a sequence of deterministic elliptic problems, with elliptic coefficients E
[
λ2k
]

and modified (deflated) rhs
dimension is dimVh

Resolution of a sequence of linear stochastic equations
dimension is dimSP

Update problems: system of linear equations for stochastic random variables
dimension is m × dimSP

To be compared with the Galerkin problem dimension
dimVh × dimSP

Weak modification of existing (FE/FV) codes
(weakly intrusive)
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An example

Test case definition : 25 x 0.695 km

D

C

L

M

h1

h2

h3

h5

Variation lineaire de h4 a h3

h6

h4

∆ Head (m) Expectation Range distribution
∆h1,2 +51 ±10 Uniform
∆h1,3 +21 ±5 Uniform
∆h1,6 -3 ±2 Uniform
∆h2,5 -110 ±10 Uniform
∆h3,4 -160 ±20 Uniform

Uncertain conductivities
Layer ki median ki min ki max distribution
Dogger 25 5 125 LogUniform
Clay 3 10−6 3 10−7 3 10−5 LogUniform
Limestone 6 1.2 30 LogUniform
Marl 3 10−5 1 10−5 1 10−4 LogUniform

Parameterization

9 independent r.v. {ξ1, . . . , ξ9} ∼ U[0, 1]9

dimSP = P + 1 = (9 + No)!/(9!No!)

Ne ≈ 30, 000 finite elements

dim(Vh) ≈ 15, 000

Dimension of Galerkin problem: 8.2 105 (No = 2),
3.3 106 (No = 3)
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An example

Convergence

Galerkin residual (left) and error (right) norms as a function of m (No = 3)
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An example

CPU times (No = 3)
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Hierarchical Decomposition

Full separation

So far, deterministic / stochastic separation:

Um(x , ξ) = Um(x , ξ1, . . . , ξN) =
m∑

r=1

ur (x)λr (ξ1, . . . , ξN),

where λr (ξ) ∈ S.
Does not address high-dimensionality issue whenever N is large.

However, if the ξi are independent, S has a tensor product structure,

S = S1 ⊗ · · · ⊗ SN,

we can think of a decomposition of the form

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

where now λi
r (ξi ) ∈ Si .
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Hierarchical Decomposition

Full separation

Extension of the previous algorithms for the computation of

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

is straightforward:

same deterministic problems

stochastic and update problems for the (separated) λr are substituted with
alternated direction resolutions: iterations over sequence of one-dimensional
problems.

For instance, stochastic problem(s) in direction i : find λ ∈ Si such that

E
[(
λ

1
r . . . λ . . . λ

N
r

)(
λ

1
r . . . β . . . λ

N
r

)∫
Ω

k∇ur ·∇ur dx
]

= E
[
−
(
λ

1
r . . . β . . . λ

N
r

)(∫
Ω

k∇U r−1 ·∇ur dx +

∫
Ω

fur dx
)]

, ∀β ∈ Si .
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Hierarchical Decomposition

Full separation

Clearly, using

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

we trade convergence with complexity reduction.

This can be mitigated using using a Rλ-rank approximation of the stochastic
coefficients:

Um(x , ξ) =
m∑

r=1

ur (x)

 Rλ∑
r ′=1

λ1
r,r ′ (ξ1) . . . λN

r,r ′ (ξN)

 ,

with a greedy-type approximation of low rank approximation of λr .

Extension of the algorithms is immediate

Rλ can be made rank dependent

Efficient implementation requires separated representation of the operator.
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Hierarchical Decomposition

An example: diffusion

Independent random conductivities over 7 sub-domains, with same distribution
(log-normal): N = 7

Si=1,7 = Π10(R), so dimS = 117
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(Damped) Wave equation

Wave equation (Deterministic)

Consider the deterministic wave equation,

− ω2ρu(x)−∇ · (κ̃∇u(x)) = f (x), inΩ

u(x ∈ ∂Ω) = 0

ω is the frequency

ρ the density

κ̃
.

= κ(1− iβω) ∈ C the wave velocity with κ, β > 0

Let L2(Ω) = L2(Ω,C) with inner product and norm

(u, v)Ω = Re
(∫

Ω
u∗(x)v(x)dΩ

)
, ‖u‖2

L2(Ω) = (u, u)Ω,

The weak formulation: Find u ∈ H1
0 (Ω,C) such that

a(u, v)− b(v) = 0 ∀v ∈ H1
0 (Ω),

with the bilinear and linear forms

a(u, v) = Re
[
−ω2

∫
Ω

u∗vdΩ +

∫
Ω
κ̃∇u∗ ·∇v dΩ

]
, b(v) = Re

[∫
Ω

f∗v dΩ

]
.
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(Damped) Wave equation

Wave equation (Stochastic version)

Take now ω, ρ and κ as second order random variable defined on a probability space
P = (Θ,ΣΘ, µ).
We extend L2(Ω) and H1

0 (Ω) to L2(Ω,Θ) and H1
0 (Ω,Θ) by tensorization, and we

assume
U(x , θ) ∈ L2(Ω,Θ)⇔ E [(U(·),U(·))Ω] <∞.

Variational form of the stochastic wave equation
Find U ∈ H1

0 (Ω,Θ) such that

A(U,V )− B(V ) = 0, ∀V ∈ H1
0 (Ω,Θ),

where

A(U,V ) = E
[

Re
[
−ω2(θ)

∫
Ω

U∗(θ)V (Θ)dΩ +

∫
Ω
κ(θ)∇U∗(θ) ·∇V (θ) dΩ

]]
,

and

B(V ) = E
[

Re
[∫

Ω
f∗V (θ) dΩ

]]
.



Galerkin Method Galerkin Projection of Linear / Non-linear Models Proper Generalized Decomposition

(Damped) Wave equation

PGD approximation

We seek for U ∈ H1
0 (Ω,Θ) = H1

0 (Ω)⊗ L2(Θ) has the separated form

U(x , θ) =
r=∞∑
r=0

ur (x)λr (θ), ur ∈ H1
0 (Ω), λr ∈ L2(Θ),

following the PGD approach based on the deterministic and stochastic problems

uR = D(UR−1
, λR) : A(UR−1 + uRλR , vλR)− B(vλR) = 0,∀v ∈ H1

0 (Ω) Deter. problem

λR = S(UR−1
, uR) : A(UR−1 + uRλR , uRβ)− B(uRβ) = 0,∀β ∈ L2(Θ) Stoch. problem

and update problem:
given ur=1,...,R compute λr=1,...,R such that

A

(
R∑

r=0

urλr , ur′β

)
− B(ur′β) = 0, ∀β ∈ L2(Θ) and r ′ = 1, . . . ,R.
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(Damped) Wave equation

PGD-Arnoldi algorithm

Assume rank-R approximation has been obtained.
1 Initialization: set λ ∈ L2(Θ), l = 0
2 Arnoldi subspace generation:

Set w = D(UR , λ)
For r = 1, . . . ,R + l w ← (w, ur )Ω

If h = (w,w)Ω < ε break
Set l ← l + 1, uR+l = w/h
Set λ = S(UR , uR+l )
Repeat for next Arnoldi vector

3 Update solution: set R ← R + l and solve

A

( R∑
r=0

urλr , ur ′β

)
− B(ur ′β) = 0, ∀β ∈ L2(Θ) and r ′ = 1, . . . ,R.

4 Check residual to restart at step 1 or stop
Advantage: limited number of deterministic problem solves to generate the
deterministic basis.
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(Damped) Wave equation

Stochastic parametrization

We introduce a finite set of N independnt real-valued r.v. ξ .
= (ξ1 . . . ξN) with

uniform distribution on Ξ
.

= 1N . The random frequency, density and stiffness are
parametrized using ξ,

(ω, κ, ρ)(θ) −→ (ω, κ, ρ)(ξ(θ)),

and U is sought in the image probability space:

H1
0 (Ω,Ξ) 3 U(x , ξ(θ)) ≈

R∑
r=1

ur (x)λr (ξ(θ)).

U(x , )̇ is expected to be smooth a.s.: need for a limited number of spatial modes
to span the stochastic solution space,

U(·, ξ) can exhibit steep and complex dependences with respect to the input
parameters.

The complexity of the mapping ξ ∈ Ξ 7→ U(·, ξ) ∈ H1
0 (Ω) reflects in the stochastic

coefficients λr (ξ) and calls for appropriate discretization at the stochastic level.
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(Damped) Wave equation

stochastic multi-resolution framework

Presently, we use piecewise polynomial approximations at the stochastic level:

Ξ is adaptively decomposed into sub-domains through a sequence a dyadic (1d)
partitions

A tree structure is used to manage the resulting stochastic space

Multi-resolution analysis is used to control the local adaptation (anisotropic
refinement of the partition of Ξ)

Stochastic and update problems are solved independently over the sub-domains
(efficient parallelization)

(see [Tryoen, LM and Ern, SISC 2012])

Introduction
Spectral UQ

Stochastic hyperbolic systems
Stochastic adaptation

Tree data structure
Adaptive scheme
Burgers equation
Traffic equation

Adaptivity
Singularity curves are localized in ⌅ : stochastic adaptivity

Incomplete and anisotropic binary trees

Operators for multi-resolution analysis :
Prediction operator : define the solution in a stochastic space larger than the
current one (add new leafs and L2-injection).

Restriction operator : define the solution in a stochastic space smaller one the
current one (remove leafs and L2-projection).

Rely on recursive application of elementary (directional) operators, full
exploitation of the tree structure.

Le Maître Galerkin Method for Uncertain Conservation Laws
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(Damped) Wave equation

PGD-Arnoldi with Adaptation at the Stochastic level

Given the approximation U r and a stochastic space Sr

1 Arnoldi iterations to generate orthonormal ur+1, . . . ur+l , using λ ∈ Sr

2 set r ← r + l
3 While not satisfying accuracy criterion, repeat

Solve the update problem for {λ1, . . . , λr} in S r

Enrich adaptively S r

4 Compute residual norm
5 If not converge restart at step 1.

Observe:

Same approximation space for all stochastic coefficients (ease implementation
and favor parallelization)

Continuous enrichment, no coarsening

Successive Arnoldi spaces generated using an coarse stochastic space! (in fact
robust)

Accuracy requirement should balance stochastic discretization and reduced
space errors.
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(Damped) Wave equation

Example

log(κ) ∼ U[−4 : −2]

ω ∼ U[0.5, 1]

ρ = 1 and β = 0.05

Third order (Legendre) expansion.

r = 8 r = 13 r = 19 r = 26 r = 30

ω

log(κ)

ω

log(κ)

ω

log(κ)

ω

log(κ)

ω

log(κ)
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(Damped) Wave equation

Example

Selected Arnoldi modes: real part (top) and imaginary part (bottom)
r = 1 r = 3 r = 5 r = 15 r = 25

r = 1 r = 3 r = 5 r = 15 r = 25
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(Damped) Wave equation

Example

Residual Error # of sub-domains
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PGD for the Stochastic NS eq.

Stochastic Navier-Stokes equations

Consider the steady, incompressible Navier-Stokes equations

U(θ)∇U(θ) = −∇P(θ) + ν(θ)∇2U(θ) + f (θ) in Ω,

∇ · U(θ) = 0 in Ω,

U(θ) = 0 on ∂Ω.

in a bounded (2d) domain Ω.
In view of PGD of the solution, we need to consider (mainly)

1 non-linear character (increases when ν ↓ 0)
2 enforcement of the divergence free constraint
3 stabilization (upwinding) due to the convective term

None of these will be really address here, simply numerical experiments!
[Tamellini, LM, Nouy, SISC, 2014]
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PGD for the Stochastic NS eq.

Weak form

Deterministic space V = H1
0,div (Ω).

Weak formulation: Find U ∈ X .
= V ⊗ S such that

E
[∫

Ω
[(U(θ)∇U(θ)) · V (θ) + ν(θ)∇U(θ) ∇V (θ)− F (θ) · V (θ)] dx

]
∀V ∈ X.

The deterministic problem u = D(λ,Um) writes: ∀v ∈ V∫
Ω

(
E
[
λ

3
]
u∇u + u∇ūm(λ) + ūm(λ)∇u

)
· vdx +

∫
Ω

E
[
νλ

2
]
∇u∇vdx

=

∫
Ω

E
[
λ(F − Um∇Um)

]
· vdx −

∫
Ω

E
[
νλ∇Um]∇vdx.

where ūm(λ) = E
[
λ2Um].

Stochastic problem λ = S(u,Um) writes: ∀β ∈ S

E
[
λ

2
β
] ∫

Ω

(u∇u · u)dx + E
[
λβ

∫
Ω

(u∇Um + Um∇u) · udx
]

+

∫
Ω

E [νλβ]∇u∇udx

= E
[
β

∫
Ω

(F − Um∇Um) · udx
]
− E

[
β

∫
Ω

ν∇Um∇udx
]
.
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PGD for the Stochastic NS eq.

Complexity

Resolution of a sequence of deterministic problems, NS + Lin. term and deflated
rhs

dimension is dimVh

Resolution of a sequence of quadratic stochastic equations
dimension is dimS

Update problems: system of quadratique equations for stochastic random
variables

dimension is m × dimS
To be compared with the Galerkin problem dimension

dimVh × dimS
Weak modification of existing (FE/FV) codes

(weakly intrusive)
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Example

Stochastic discretization:

Parametrization of ν(θ) and F (θ) using N i.i.d. random variables:

ξ = {ξ1, . . . , ξN} ∼ N(0, I2).

Wiener-Hermite polynomials for the basis for S

λ(θ) =
∑
α

λαΨα(ξ(θ)),

Truncature to (total) polynomial degree No:

dimS =
(No + N)!

No!N!
.
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Example

Case of a deterministic forcing and a random (Log-normal) viscosity:

 0.0025  0.005  0.0075  0.01

pd
f

ν

pν

ν(θ) =
1

200
exp

(
σν√

N

N∑
i=1

ξi (θ)

)
(+10−4), ξi ∼ N(0, 1) i.i.d.

Same problem but for parametrization involving N Gaussian R.V.
Galerkin solution for N = 1 and No = 10 (Wiener-Hermite expansion)

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Mean and standard deviation of UG rotational.
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Example

First PGD-Arnoldi modes for N = 1 and No = 10
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Example

Convergence of PGD solution N = 1 and No = 10
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Convergence with rank of resiudal and error norms; POD coefficients at m = 15 (right)
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Norms of the POD coefficients at m = 15 (left), residual norm (center), |λ|’s norm (right).

PGD captures the essential features of the stochastic solution
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Example

Stochastic forcing F : Hodge’s decomposition

F (x, θ) ≈ F N(x, ξ(θ)) = f 0 +
N∑

k=0

√
γk f k (x)ξk (θ).

KL modes of the forcing:
scale = 1 scale = 5 scale = 5 scale = 5 scale = 15

scale = 15 scale = 15 scale = 15 scale = 25 scale = 25

Forcing modes for L = 1, σ/f 0
ω = 0.2
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Example

First PGD-Arnoldi modes
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Example

Results at ν = 1/50: No = 3, N = 11, P = 364
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Residual (left), ‖Um − UG‖ (center) and norm of POD modes for m = 45 (right).
Essentially < 50 Navier-Stokes solves!
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Residual computation:

computation of the residual in H1
0,div (Ω)

need to reconstruct the pressure

2 alternatives: apply PGD to the pressure unknown, given the reduced velocity
approximation, or recycle the pressure fields associated to the enforcement of the
divergence-free constraint during the Arnoldi process as a reduced pressure
basis.
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Comparison of different error measures of the PGD solution at ν = 1/10, 1/50 and
1/100 (from left to right).



Galerkin Method Galerkin Projection of Linear / Non-linear Models Proper Generalized Decomposition
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Questions & Discussion


	Galerkin Method
	Stochastic Galerkin projection

	Galerkin Projection of Linear / Non-linear Models
	Linear Models
	Galerkin Approximation of Non-Linearities

	Proper Generalized Decomposition
	Definition
	Algorithms
	An example
	Hierarchical Decomposition
	(Damped) Wave equation
	PGD for the Stochastic NS eq.
	Example


